×

Transmutation operators and Paley-Wiener theorem associated with a singular differential-difference operator on the real line. (English) Zbl 1140.42302

Summary: We consider a singular differential-difference operator \(\Lambda\) on the real line which includes, as, particular case, the Dunkl operator associated with the reflection group \(\mathbb Z_2\) on \(\mathbb R\). We exhibit a Laplace integral representation for the eigenfunctions of the operator \(\Lambda\). From this representation, we construct a pair of integral transforms which turn out to be transmutation operators of \(\Lambda\) into the first derivative operator \(d/dx\). We exploit these transmutation operators to develop a new commutative harmonic analysis on the real line corresponding to the operator \(\Lambda\). In particular, we establish a Paley-Wiener theorem and a Plancherel theorem for the Fourier transform associated to \(\Lambda\).

MSC:

42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
33C80 Connections of hypergeometric functions with groups and algebras, and related topics
34K06 Linear functional-differential equations
34L10 Eigenfunctions, eigenfunction expansions, completeness of eigenfunctions of ordinary differential operators
43A80 Analysis on other specific Lie groups
Full Text: DOI

References:

[1] Braaksma B. L. J., Springer Lectures Note in Mathematics pp 62–
[2] DOI: 10.1016/S0764-4442(00)88570-5 · Zbl 1019.47036 · doi:10.1016/S0764-4442(00)88570-5
[3] DOI: 10.1007/BF01244305 · Zbl 0789.33007 · doi:10.1007/BF01244305
[4] DOI: 10.4153/CJM-1991-069-8 · Zbl 0827.33010 · doi:10.4153/CJM-1991-069-8
[5] DOI: 10.1090/conm/138/1199124 · doi:10.1090/conm/138/1199124
[6] DOI: 10.1137/0521088 · Zbl 0736.34055 · doi:10.1137/0521088
[7] DOI: 10.1007/978-3-662-30724-3 · doi:10.1007/978-3-662-30724-3
[8] Kamefuchi S., Quantum Field Theory and Parastatistics (1982)
[9] DOI: 10.1007/978-3-662-25839-2 · doi:10.1007/978-3-662-25839-2
[10] DOI: 10.1080/10652460108819335 · Zbl 1048.34139 · doi:10.1080/10652460108819335
[11] Olver F. W. J., Asymptotics and Special Functions (1974) · Zbl 0303.41035
[12] M. Rosenblum, Operator Theory: Advances and Applications, Generalized Hermite polynomials and the Bose-like oscillator calculus 73 (Birkhäuser Verlag, 1994) pp. 369–396.
[13] Schwartz L., Théorie des Distributions (1966)
[14] Trimèche K., J. Math. Pures Appl. 60 pp 51–
[15] DOI: 10.1103/PhysRev.84.788 · Zbl 0043.41903 · doi:10.1103/PhysRev.84.788
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.