×

Solutions for quasilinear Schrödinger equations via the Nehari method. (English) Zbl 1140.35399

The authors deal with the following quasilinear Schrödinger type equation
\[ -\Delta_xu+V(x)u-\tfrac 12(\Delta_x(| u|^2))u= \lambda| u|^{p-1}u \quad\text{ in }\mathbb{R}^N,\;\lambda>0.\tag{1} \] Under some natural assumptions on \(V(x)\) and \(p\in\mathbb{R}\) the authors prove the existence of both one-sign and nodal ground states solition type solutions for (1). To this end they use the Nehari method.

MSC:

35J10 Schrödinger operator, Schrödinger equation
35J20 Variational methods for second-order elliptic equations
35J60 Nonlinear elliptic equations
Full Text: DOI

References:

[1] DOI: 10.1016/0022-1236(73)90051-7 · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[2] DOI: 10.3934/dcds.2003.9.55 · Zbl 1023.35033 · doi:10.3934/dcds.2003.9.55
[3] DOI: 10.1007/BF00379536 · Zbl 0884.58023 · doi:10.1007/BF00379536
[4] DOI: 10.1007/s000300050066 · Zbl 0923.35049 · doi:10.1007/s000300050066
[5] Berestycki H., Arch. Rational Mech. Anal. 82 pp 313– (1983)
[6] Brüll L., Expos. Math. 4 pp 278– (1986)
[7] Canino A., (Montreal, PQ, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 472, in: Topol. Methods in Differential Equations and Inclusions pp 1– (1995)
[8] DOI: 10.1216/rmjm/1181071858 · Zbl 0907.35050 · doi:10.1216/rmjm/1181071858
[9] DOI: 10.1016/0022-1236(86)90094-7 · Zbl 0614.35035 · doi:10.1016/0022-1236(86)90094-7
[10] Colin M., Nonlinear Anal. 56 (2) pp 213– (2004) · Zbl 1035.35038 · doi:10.1016/j.na.2003.09.008
[11] DOI: 10.1016/0022-1236(86)90096-0 · Zbl 0613.35076 · doi:10.1016/0022-1236(86)90096-0
[12] Gilbarg D., 2nd ed., in: Elliptic Partial Differential Equations of Second Order (1983) · Zbl 0562.35001
[13] DOI: 10.1007/BF01325508 · doi:10.1007/BF01325508
[14] DOI: 10.1143/JPSJ.50.3262 · doi:10.1143/JPSJ.50.3262
[15] DOI: 10.1080/03605309908821469 · Zbl 0935.35153 · doi:10.1080/03605309908821469
[16] Lions P. L., Analyse Nonlinéaire 1 pp 109– (1984)
[17] DOI: 10.1090/S0002-9939-02-06783-7 · Zbl 1229.35269 · doi:10.1090/S0002-9939-02-06783-7
[18] DOI: 10.1016/S0022-0396(02)00064-5 · Zbl 1229.35268 · doi:10.1016/S0022-0396(02)00064-5
[19] DOI: 10.1143/JPSJ.42.1824 · doi:10.1143/JPSJ.42.1824
[20] DOI: 10.1007/s005260100105 · Zbl 1052.35060 · doi:10.1007/s005260100105
[21] DOI: 10.1512/iumj.1986.35.35036 · Zbl 0625.35027 · doi:10.1512/iumj.1986.35.35036
[22] Rabinowitz P., CBMS Conf. Ser. in Math. 65, Amer. Math. Soc., in: Minimax Methods in Critical Point Theory with Applications to Differential Equations (1986)
[23] DOI: 10.1007/BF00946631 · Zbl 0763.35087 · doi:10.1007/BF00946631
[24] DOI: 10.1007/BF01626517 · Zbl 0356.35028 · doi:10.1007/BF01626517
[25] DOI: 10.1007/978-1-4612-4146-1 · doi:10.1007/978-1-4612-4146-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.