×

Lie algebraic characterization of manifolds. (English) Zbl 1138.53313

This paper studies Jacobi structures on affine bundles. It is well known that linear Poisson structures are in one-to-one correspondence with Lie algebroid structures on the dual vector bundle. In this paper, the author proves the bijective correspondence between affine Jacobi structures and Lie algebroid structures. The passage from Poisson structures and Lie algebroids to Jacobi structures and Jacobi algebroids is in fact the passage from derivations to first order differential operators. Examples and applications of this passage are also studied.

MSC:

53D17 Poisson manifolds; Poisson groupoids and algebroids
17B63 Poisson algebras
17B66 Lie algebras of vector fields and related (super) algebras

References:

[1] K. Abe: “Pursell-Shanks type theorem for orbit spaces and G-manifolds”, Publ. Res. Inst. Math. Sci., Vol. 18, (1982), pp. 265-282.; · Zbl 0519.57033
[2] I. Amemiya: “Lie algebra of vector fields and complex structure”, J. Math. Soc. Japan, Vol. 27, (1975), pp. 545-549. http://dx.doi.org/10.2969/jmsj/02740545; · Zbl 0311.57012
[3] C.J. Atkin and J. Grabowski: “Homomorphisms of the Lie algebras associated with a symplectic manifolds”, Compos. Math., Vol. 76, (1990), pp. 315-348.; · Zbl 0718.53025
[4] F. Boniver, S. Hansoul, P. Mathonet and N. Poncin: “Equivariant symbol calculus for differential operators acting on forms”, Lett. Math. Phys., Vol. 62, (2002), pp. 219-232. http://dx.doi.org/10.1023/A:1022251607566; · Zbl 1035.17034
[5] A. Campillo, J. Grabowski and G. Müller G: “Derivation algebras of toric varieties”, Comp. Math., Vol. 116, (1999), pp. 119-132. http://dx.doi.org/10.1023/A:1000612012255; · Zbl 1053.14518
[6] P. Cohen, Yu Manin and D. Zagier: “Automorphic pseudodifferential operators, Algebraic Aspects of Integrable Systems”, Progr. Nonlinear Differential Equations Appl., Vol. 26, (1997), pp. 17-47.; · Zbl 1055.11514
[7] M. De Wilde and P. Lecomte: “Some Characterizations of Differential Operators on Vector Bundles”, E.B. Christoffel, P. Butzer and F. Feher (Eds.), Brikhäuser Verlag, Basel, 1981, pp. 543-549.; · Zbl 0487.58034
[8] M. De Wilde and P. Lecomte: “Cohomology of the Lie Algebra of Smooth Vector Fields of a Manifold, associated to the Lie Derivative of Smooth Forms”, J. Math. pures et appl., Vol. 62, (1983), pp. 197-214.; · Zbl 0481.58032
[9] C. Duval and V. Ovsienko: “Space of second order linear differential operators as a module over the Lie algebra of vector fields”, Adv. in Math., Vol. 132(2), (1997), pp. 316-333. http://dx.doi.org/10.1006/aima.1997.1683; · Zbl 0902.17011
[10] M. Flato and A. Lichnerowicz: “Cohomologie des représentations definies par la derivation de Lie et à valeurs dans les formes, de l”algèbre de Lie des champs de vecteurs d’une variété différentiable. Premiers espaces de cohomologie. Applications”, C. R. Acad. Sci., Sér. A, Vol. 291, (1980), pp. 331-335.; · Zbl 0462.58011
[11] H. Gargoubi and V. Ovsienko: “Space of linear differential operators on the real line as a module over the Lie algebra of vector fields”, Internat. Math. Res. Notices, Vol. 5, (1996), pp. 235-251. http://dx.doi.org/10.1155/S1073792896000177; · Zbl 0851.17023
[12] K. Grabowska and J. Grabowski: “The Lie algebra of a Lie algebroid”, In: J. Kubarski et al. (Eds.): Lie Algebroids and Related Topics in Differential Geometry, Vol. 54, Banach Center Publications, Warszawa, 2001, pp. 43-50.; · Zbl 1003.17011
[13] I. Gel’fand and A. Kolmogoroff: “On rings of continuous functions on topological spaces”, C. R. (Dokl.) Acad. Sci. URSS, Vol. 22, (1939), pp. 11-15.; · JFM 65.0500.03
[14] J. Grabowski: “Isomorphisms and ideals of the Lie algebras of vector fields”, Invent. math., Vol. 50, (1978), pp. 13-33. http://dx.doi.org/10.1007/BF01406466; · Zbl 0378.57010
[15] J. Grabowski: “Lie algebras of vector fields and generalized foliations”, Publ. Matem., Vol. 37, (1993), pp. 359-367.; · Zbl 0841.53027
[16] J. Grabowski: “Isomorphisms of Poisson and Jacobi brackets”, In: J. Grabowski and P. Urbański (Eds.): Poisson Geometry, Vol. 51, Banach Center Publications, Warszawa, 2000, pp. 79-85.; · Zbl 1017.53071
[17] J. Grabowski: “Isomorphisms of algebras of smooth functions revisited”, Archiv Math., to appear, electronic version at http://arXiv.org/abs/math.DG/0310295.; · Zbl 1082.46020
[18] J. Grabowski and N. Poncin: “Automorphisms of quantum and classical Poisson algebras”, Comp. Math. London Math. Soc., Vol. 140, (2004), pp. 511-527 http://arXiv.org/abs/math.RA/0211175 v1; · Zbl 1044.17013
[19] H. Grauert: “On Levi”s problem and the embedding of real analytic manifolds“, Ann. Math., Vol. 68, (1958), pp. 460-472. http://dx.doi.org/10.2307/1970257<pub-id pub-id-type=”doi”>10.2307/1970257; · Zbl 0108.07804
[20] H. Hauser and G. Müller: “Affine varieties and Lie algebras of vector fields”, Manusc. Math., Vol. 80, (1993), pp. 309-337. http://dx.doi.org/10.1007/BF03026556; · Zbl 0805.14004
[21] A. Koriyama: “On Lie algebras of vector fields with invariant submanifolds”, Nagoya Math. J., Vol. 55, (1974), pp. 91-110.; · Zbl 0273.22016
[22] A. Koriyama, Y. Maeda and H. Omori: “On Lie algebras of vector fields”, Trans. Amer. Math. Soc., Vol. 226, (1977), pp. 89-117. http://dx.doi.org/10.2307/1997943; · Zbl 0318.57023
[23] A. Kriegl and P.W. Michor: “The Convenient Setting of Global Analysis”, Math. Surv. Monog., Vol. 53, American Mathematical Society, (1997).; · Zbl 0889.58001
[24] P. Lecomte: “On some sequence of graded Lie algebras associated to manifolds”, Ann. Glob. Anal. Geom., Vol. 12, (1994), pp. 183-192. http://dx.doi.org/10.1007/BF02108296; · Zbl 0824.58024
[25] P. Lecomte, P. Mathonet and E. Tousset: “Comparison of some modules of the Lie algebra of vector fields”, Indag. Math., Vol. 7(4), (1996), pp 461-471. http://dx.doi.org/10.1016/S0019-3577(97)89133-1; · Zbl 0892.58002
[26] P. Lecomte and V. Ovsienko: “Projectively equivariant symbol calculus”, Lett. Math. Phys., Vol. 49, (1999), pp. 173-196. http://dx.doi.org/10.1023/A:1007662702470; · Zbl 0989.17015
[27] J. Mrčun: On isomorphisms of algebras of smooth functions, electronic version at http://arXiv.org/abs/math.DG/0309179.; · Zbl 1077.58005
[28] H. Omori: “Infinite dimensional Lie transformation groups”, Lect. Notes in Math., Vol. 427, (1976).; · Zbl 0328.58005
[29] N. Poncin: “Cohomologie de l”algèbre de Lie des opérateurs différentiels sur une variété, à coefficients dans les fonctions”, C.R.A.S. Paris, Vol. 328, Serie I, (1999), pp. 789-794.; · Zbl 0968.17008
[30] N. Poncin: “Equivariant Operators between some Modules of the Lie Algebra of Vector Fields”, Comm. in Alg., Vol. 32(7), (2004), pp. 2559-2572. http://dx.doi.org/10.1081/AGB-120037399; · Zbl 1082.17011
[31] N. Poncin: Equivariant Operators between some Modules of the Lie Algebra of Vector Fields, preprint, Centre Universitaire de Luxembourg, (http://arXiv.org/abs/math.RT/0205297).; · Zbl 1082.17011
[32] M.E. Shanks and L.E. Pursell: “The Lie algebra of a smooth manifolds”, Proc. Amer. Math. Soc., Vol. 5, (1954), pp. 468-472. http://dx.doi.org/10.2307/2031961; · Zbl 0055.42105
[33] T. Siebert: “Lie algebras of derivations and affine differential geometr over fields of characteristic 0”, Mat. Ann., Vol. 305, (1996), pp. 271-286. http://dx.doi.org/10.1007/BF01444221; · Zbl 0858.17018
[34] S.M. Skryabin: The regular Lie rings of derivations of commutative rings, preprint WINITI 4403-W87 (1987).;
[35] H. Whitney: “Differentiable manifolds”, Ann. Math., Vol. 37, (1936), pp. 645-680. http://dx.doi.org/10.2307/1968482; · Zbl 0015.32001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.