×

ECM: An evidential version of the fuzzy \(c\)-means algorithm. (English) Zbl 1131.68081

Summary: A new clustering method for object data, called ECM (evidential \(c\)-means) is introduced, in the theoretical framework of belief functions. It is based on the concept of credal partition, extending those of hard, fuzzy, and possibilistic ones. To derive such a structure, a suitable objective function is minimized using an FCM-like algorithm. A validity index allowing the determination of the proper number of clusters is also proposed. Experiments with synthetic and real data sets show that the proposed algorithm can be considered as a promising tool in the field of exploratory statistics.

MSC:

68T05 Learning and adaptive systems in artificial intelligence
68T10 Pattern recognition, speech recognition

Software:

evclust
Full Text: DOI

References:

[1] Bezdek, J. C., Pattern Recognition with Fuzzy Objective Function Algorithms (1981), Plenum Press: Plenum Press New York · Zbl 0503.68069
[2] Dunn, J. C., A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters, J. Cybern., 32-57 (1974) · Zbl 0291.68033
[3] Hathaway, R. J.; Davenport, J. W.; Bezdek, J. C., Relational duals of the \(c\)-means clustering algorithms, Pattern Recognition, 22, 205-212 (1989) · Zbl 0673.62050
[4] Krishnapuram, R.; Keller, J., A possibilistic approach to clustering, IEEE Trans. Fuzzy Syst., 1, 2, 98-110 (1993)
[5] Dubois, D.; Prade, H., Possibility Theory: An Approach to Computerized Processing of Uncertainty (1988), Plenum Press: Plenum Press New York · Zbl 0703.68004
[6] Davé, R. N., Clustering relational data containing noise and outliers, Pattern Recognition Lett., 12, 657-664 (1991)
[7] Hathaway, R. J.; Bezdek, J. C.; Davenport, J. W., On relational versions of \(c\)-means algorithm, Pattern Recognition Lett., 17, 607-612 (1996)
[8] S. Sen, R.N. Davé, Clustering relational data containing noise and outliers, In: FUZZ’IEEE 98, 1998, pp. 1411-1416.; S. Sen, R.N. Davé, Clustering relational data containing noise and outliers, In: FUZZ’IEEE 98, 1998, pp. 1411-1416.
[9] De Caceres, M.; Oliva, F.; Font, X., On relational possibilistic clustering, Pattern Recognition, 39, 2010-2024 (2006) · Zbl 1100.68104
[10] Denœux, T.; Masson, M.-H., Clustering of proximity data using belief functions, (Bouchon-Meunier, B.; Foulloy, L.; Yager, R. R., Intelligent Systems for Information Processing from Representation to Application (2003), Elsevier: Elsevier Amsterdam), 291-302 · Zbl 1027.68145
[11] Denœux, T.; Masson, M.-H., EVCLUS: EVidential CLUStering of proximity data, IEEE Trans. Syst. Man Cybern. Part B, 34, 1, 95-109 (2004)
[12] Smets, P., The transferable Belief Model for quantified belief representation, (Gabbay, D. M.; Smets, P., Hanbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 1 (1998), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 267-301 · Zbl 0939.68112
[13] Shafer, G., A Mathematical Theory of Evidence (1976), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0359.62002
[14] Smets, P.; Kennes, R., The Transferable Belief Model, Artif. Intell., 66, 191-243 (1994) · Zbl 0807.68087
[15] Smets, P., The combination of evidence in the Transferable Belief Model, IEEE Trans. Pattern Anal. Mach. Intell., 12, 5, 447-458 (1990)
[16] Cobb, B. R.; Shenoy, P. P., On the plausibility transformation method for translating belief function models to probability models, Int. J. Approximate Reasoning, 41, 3, 314-330 (2006) · Zbl 1093.68112
[17] Smets, P., Decision making in the TBM: the necessity of the pignistic transformation, Int. J. Approximate Reasoning, 38, 2, 133-147 (2005) · Zbl 1065.68098
[18] Yager, R. R., On the normalization of fuzzy belief structure, Int. J. Approximate Reasoning, 14, 27-153 (1996) · Zbl 0935.03036
[19] Döring, C.; Lesot, M.-J.; Kruse, R., Data analysis with fuzzy clustering methods, Comput. Data Anal., 51, 192-214 (2006) · Zbl 1157.62434
[20] Barni, M.; Cappellini, V.; Mecocci, A., Comments on a possibilistic approach to clustering, IEEE Trans. Fuzzy Syst., 4, 3, 393-396 (1996)
[21] Krishnapuram, R.; Keller, J., The possibilistic \(c\)-means algorithm: insights and recommendations, IEEE Trans. Fuzzy Syst., 4, 3, 385-393 (1996)
[22] Masson, M.-H.; Denœux, T., Clustering interval-valued data using belief functions, Pattern Recognition Lett., 25, 2, 163-171 (2004)
[23] Bezdek, J. C.; Keller, J.; Krishnapuram, R.; Pal, N. R., Fuzzy Models and Algorithms for Pattern Recognition and Image Processing (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Boston · Zbl 0998.68138
[24] Ménard, M.; Demko, C.; Loonis, P., The fuzzy \(c + 2\) means: solving the ambiguity rejection in clustering, Pattern Recognition, 33, 1219-1237 (2000)
[25] Windham, M. P., Numerical classification of proximity data with assignment measure, J. Classification, 2, 157-172 (1985)
[26] Lingras, P., Unsupervised rough set classification using GAs, J. Intelligent Inf. Syst., 16, 215-228 (2001) · Zbl 1016.68112
[27] Bezdek, J. C., Cluster validity with fuzzy sets, J. Cybern., 3, 58-73 (1974) · Zbl 0294.68035
[28] Davé, R. N., Validating fuzzy partition obtained through \(c\)-shell clustering, Pattern Recognition Lett., 17, 613-623 (1996)
[29] Ramer, A., Uniqueness of information measure in the theory of evidence, Fuzzy Sets and Systems, 24, 183-196 (1987) · Zbl 0638.94027
[30] Klir, G. J.; Wierman, M. J., Uncertainty-based Information, Elements of Generalized Inf. Theory (1998), Springer: Springer New York · Zbl 0902.68061
[31] Anderson, E., The irises of the Gasp peninsula, Bull. Am. Iris Soc., 59, 2-5 (1935)
[32] Fisher, R. A., The use of multiple measurements in taxonomic problems, Ann. Eugen., 7, 179-188 (1936)
[33] Bloch, I., Some aspects of Dempster-Shafer evidence theory for classification of multi-modality medical images taking partial volume effect into account, Pattern Recognition Lett., 17, 8, 905-919 (1996)
[34] I. Bloch, Defining belief functions using mathematical morphology—application to image fusion under imprecision, Int. J. Approximate Reasoning, 2007, in press, doi:10.1016/j.ijar.2007.07.008; I. Bloch, Defining belief functions using mathematical morphology—application to image fusion under imprecision, Int. J. Approximate Reasoning, 2007, in press, doi:10.1016/j.ijar.2007.07.008 · Zbl 1184.68581
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.