×

Steady Stokes flows with threshold slip boundary conditions. (English) Zbl 1129.35424

Summary: We prove the existence, uniqueness and continuous dependence on the data of weak solutions to boundary-value problems that model steady flows of incompressible Newtonian fluids with wall slip in bounded domains. The flows satisfy the Stokes equations and a nonlinear slip boundary condition: for slip to occur, the magnitude of the tangential traction must exceed a prescribed threshold, which is independent of the normal stress, and where slip occurs the tangential traction is equal to a prescribed, possibly nonlinear, function of the slip velocity. In addition, a Dirichlet condition is imposed on a component of the boundary if the domain is rotationally symmetric. The method of proof is based on a variational inequality formulation of the problem and fixed point arguments which utilize wellposedness results for the Stokes problem with a slip condition of the ‘friction type’.

MSC:

35J85 Unilateral problems; variational inequalities (elliptic type) (MSC2000)
35Q35 PDEs in connection with fluid mechanics
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Fujita, H., Mathematical Fluid Mechanics and Modeling, 888 (RIMS Kyoto University, 1994) pp. 199-216. · Zbl 0939.76527
[2] C. Le Roux and A. Tani, Steady solutions of the Navier-Stokes equations with threshold slip boundary conditions, submitted. · Zbl 1251.76008
[3] C. Le Roux and K. R. Rajagopal, A review of slip boundary conditions for the flow of fluids past solid surfaces, in preparation.
[4] Fortin, A.Côté, A. D.Tanguy, P. A., Comput. Meth. Appl. Mech. Engrg.88, 97 (1991). · Zbl 0745.76067
[5] Huilgol, R. R., J. Non-Newtonian Fluid Mech.75, 231 (1998). · Zbl 0961.76004
[6] Huilgol, R. R.Nguyen, Q. D., Internat. J. Non-Linear Mech.36, 49 (2001). · Zbl 1342.74134
[7] Navier, C. L. M. H., Mem. Acad. R. Sci. Inst. Fr.6, 389 (1823).
[8] Socolescu, D., Arch. Rational Mech. Anal.73, 191 (1980). · Zbl 0442.76028
[9] Farwig, R., Comm. Partial Diff. Eqns.14, 1579 (1989).
[10] Tani, A., Mathematical Analysis of Fluid and Plasma Dynamics, 734 (RIMS Kyoto University, 1990) pp. 123-142. · Zbl 0787.76001
[11] Tani, A.Itoh, S.Tanaka, N., Adv. Math. Sci. Appl.4, 51 (1994). · Zbl 0813.35084
[12] Itoh, S.Tani, A., Proc. Roy. Soc. EdinburghA130, 827 (2000).
[13] Burnat, M.Zajaczkowski, W. M., Topol. Meth. Nonlinear Anal.10, 195 (1997). · Zbl 0916.35086
[14] Socolowsky, J., The Navier-Stokes Equations II — Theory and Numerical Methods, 1530, eds. Heywood, J. G.et al. (Springer-Verlag, 1992) pp. 17-29. · Zbl 0781.35055
[15] Socolowsky, J., Nonlinear Anal.21, 763 (1993).
[16] Wolff, M., The Navier-Stokes Equations II — Theory and Numerical Methods, 1530, eds. Heywood, J. G.et al. (Springer-Verlag, 1992) pp. 56-70. · Zbl 0783.35049
[17] Socolowsky, J., Navier-Stokes Equations and Related Nonlinear Problems, ed. Sequeira, A. (Plenum Press, 1995) pp. 201-210. · Zbl 0833.00032
[18] Coron, J.-M., ESAIM Control Optim. Calc. Var. (electronic)1, 35 (1996). · Zbl 0872.93040
[19] Imanuvilov, O. Y., Turbulence Modeling and Vortex Dynamics, 491, eds. Boratav, O.et al.et al.et al. (Springer-Verlag, 1997) pp. 148-168. · Zbl 0897.35063
[20] Lions, J.-L.Zuazua, E., Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)26, 605 (1998). · Zbl 1053.93009
[21] Imanuvilov, O. Y., ESAIM Proc.4, 153 (1998).
[22] Le Roux, C., Arch. Rational Mech. Anal.148, 309 (1999). · Zbl 0934.76005
[23] Ionescu, I. R.Sofonea, M., Int. J. Engrg. Sci.24, 289 (1986). · Zbl 0575.76011
[24] Durbin, P. A., J. Fluid Mech.197, 157 (1988). · Zbl 0655.76081
[25] Durbin, P. A., Quart. J. Mech. Appl. Math.42, 99 (1989). · Zbl 0679.76041
[26] Sasamoto, A.Kawarada, H., Nonlinear Mathematical Problems in Industry, 1 (Gakkōtosho, 1993) pp. 175-187. · Zbl 0875.35065
[27] Fujita, H.Kawarada, H.Sasamoto, A., Advances in Numerical Mathematics, 14, eds. Ushijima, T.et al. (Kinokuniya, 1995) pp. 17-31. · Zbl 0844.76018
[28] Fujita, H.Kawahara, H.Kawarada, H., East-West J. Numer. Math.3, 111 (1995). · Zbl 0833.65120
[29] Fujita, H.Kawarada, H., Recent Developments in Domain Decomposition Methods and Flow Problems, 11 (Gakkōtosho, 1998) pp. 15-33. · Zbl 0926.76092
[30] Saito, N., Variational Problems and Related Topics, 1181 (RIMS Kyoto University, 2001) pp. 182-193. · Zbl 0985.76501
[31] Saito, N.Fujita, H., The Navier-Stokes Equations: Theory and Numerical Methods, 223, ed. Salvi, R. (Marcel Dekker, 2002) pp. 73-86. · Zbl 0995.35048
[32] N. Saito, On the Stokes equation with the leak and slip boundary conditions of the friction type: regularity of solutions, to appear.
[33] Fujita, H., J. Comput. Math.19, 1 (2001). · Zbl 0993.76014
[34] Fujita, H., Tosio Kato’s Method and Principle for Evolution Equations in Mathematical Physics, eds. Fujita, H.et al. (RIMS Kyoto University, 2002) pp. 70-85.
[35] Fujita, H., J. Comput. Appl. Math.149, 57 (2002). · Zbl 1058.76023
[36] Adams, R. A., Sobolev Spaces, 65, 1975, Academic Press · Zbl 0314.46030
[37] Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis, 2, 1984, North-Holland · Zbl 0568.35002
[38] Oden, J. T.; Kikuchi, N., Contact Problems in Elasticity, 1988, SIAM
[39] Friedrichs, K. O., Ann. Math (2)48, 441 (1947). · Zbl 0029.17002
[40] Lions, J. L.Stampacchia, G., Comm. Pure. Appl. Math.20, 493 (1967). · Zbl 0152.34601
[41] Amrouche, C.Girault, V., Proc. Jpn. Acad.67, 171 (1991). · Zbl 0752.35047
[42] Kinderlehrer, D.; Stampacchia, G., An Introduction to Variational Inequalities and Their Applications, 88, 1980, Academic Press · Zbl 0457.35001
[43] Sohr, H., The Navier-Stokes Equations, 2001, Birkhäuser · Zbl 0983.35004
[44] Rao, I. J.Rajagopal, K. R., Acta Mech.135, 113 (1999). · Zbl 0936.76013
[45] Rajagopal, K. R.Gupta, A. S., Meccanica19, 158 (1984). · Zbl 0552.76008
[46] Rajagopal, K. R.Kaloni, P. N., Continuum Mechanics and its Applications, eds. Graham, G. A. C.Malik, S. K. (Hemisphere Press, 1984) pp. 935-942.
[47] Rajagopal, K. R., Navier-Stokes Equations and Related Nonlinear Problems, ed. Sequeira, A. (Plenum Press, 1995) pp. 273-278. · Zbl 0846.35107
[48] Appell, J.; Zabrejko, P. P., Nonlinear Superposition Operators, 95, 1990, Cambridge Univ. Press · Zbl 0701.47041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.