×

A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method. (English) Zbl 1124.76027

Summary: Proliferation of degrees of freedom has plagued discontinuous Galerkin methodology from its inception over 30 years ago. This paper develops a new computational formulation that combines the advantages of discontinuous Galerkin methods with the data structure of their continuous Galerkin counterparts. The new method uses local, element-wise problems to project a continuous finite element space into a given discontinuous space, and then applies a discontinuous Galerkin formulation. The projection leads to parameterization of the discontinuous degrees of freedom by their continuous counterparts and has a variational multiscale interpretation. This significantly reduces the computational burden and, at the same time, little or no degradation of the solution occurs. In fact, the new method produces improved solutions compared with the traditional discontinuous Galerkin method in some situations.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76R99 Diffusion and convection
Full Text: DOI

References:

[1] Adjerid, S.; Devine, K. D.; Flaherty, J. E.; Krivodonova, L., A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 191, 11-12, 1097-1112 (2001) · Zbl 0998.65098
[2] Alberty, J.; Carstensen, C., Discontinuous Galerkin time discretization in elastoplasticity: motivation, numerical algorithms, and applications, Comput. Methods Appl. Mech. Engrg., 191, 43, 4949-4968 (2002) · Zbl 1018.74040
[3] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779 (2002) · Zbl 1008.65080
[4] Baumann, C. E.; Oden, J. T., A discontinuous hp finite element method for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 175, 311-341 (1999) · Zbl 0924.76051
[5] Becker, R.; Hansbo, P.; Larson, M. G., Energy norm a posteriori error estimation for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg., 192, 5-6, 723-733 (2003) · Zbl 1042.65083
[6] Brezzi, F.; Franca, L. P.; Hughes, T. J.R.; Russo, A., \(b\)=∫\(g\), Comput. Methods Appl. Mech. Engrg., 145, 329-339 (1997) · Zbl 0904.76041
[7] Brezzi, F.; Manzini, G.; Marini, D.; Pietra, P.; Russo, A., Discontinuous Galerkin approximations for elliptic problems, Numer. Methods Part. Diff. Equat., 16, 4, 365-378 (2000) · Zbl 0957.65099
[8] Brezzi, F.; Marini, L. D., A nonconforming element for the Reissner-Mindlin plate, Comput. Struct., 81, 8-11, 515-522 (2003)
[9] Brezzi, F.; Russo, A., Choosing bubbles for advection-diffusion problems, Math. Models Methods Appl. Sci., 4, 571-587 (1994) · Zbl 0819.65128
[10] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199-259 (1982) · Zbl 0497.76041
[11] Burman, E.; Ern, A., A nonlinear diffusion and discrete maximum principle for stabilized Galerkin approximations of the convection-diffusion-reaction equation, Comput. Methods Appl. Mech. Engrg., 191, 35, 3833-3855 (2002) · Zbl 1101.76354
[12] Castillo, P., A superconvergence result for discontinuous Galerkin methods applied to elliptic problems, Comput. Methods Appl. Mech. Engrg., 192, 41-42, 4675-4685 (2003) · Zbl 1040.65072
[13] (Cockburn, B.; Karniadakis, G. E.; Shu, C.-W., Discontinuous Galerkin Methods: Theory, Computation and Applications. Discontinuous Galerkin Methods: Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, vol. 11 (2000), Springer-Verlag) · Zbl 0935.00043
[14] Dawson, C., The \(P^{k+1}-S^{k\) · Zbl 1035.65123
[15] Dawson, C.; Proft, J., Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations, Comput. Methods Appl. Mech. Engrg., 191, 41-42, 4721-4746 (2002) · Zbl 1015.76046
[16] Dawson, C.; Proft, J., Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: II. Efficient flux quadrature, Comput. Methods Appl. Mech. Engrg., 191, 41-42, 4747-4780 (2002) · Zbl 1099.76521
[17] Dawson, C.; Proft, J., Coupled discontinuous and continuous Galerkin finite element methods for the depth-integrated shallow water equations, Comput. Methods Appl. Mech. Engrg., 193, 3-5, 289-318 (2003) · Zbl 1075.76570
[18] Dawson, C.; Proft, J., Discontinuous/continuous Galerkin methods for coupling the primitive and wave continuity equations of shallow water, Comput. Methods Appl. Mech. Engrg., 192, 47-48, 5123-5145 (2003) · Zbl 1075.76569
[19] de Sampaio, P. A.B.; Coutinho, A. L.G. A., A natural derivation of discontinuity capturing operator for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 190, 46-47, 6291-6308 (2001) · Zbl 1011.76042
[20] do Carmo, E. G.D.; Alvarez, G. B., A new stabilized finite element formulation for scalar convection-diffusion problems: the streamline and approximate upwind Petrov-Galerkin method, Comput. Methods Appl. Mech. Engrg., 192, 31-32, 3379-3396 (2003) · Zbl 1054.76055
[21] do Carmo, E. G.D.; Alvarez, G. B., A new upwind function in stabilized finite element formulations, using linear and quadratic elements for scalar convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 193, 23-26, 2383-2402 (2004) · Zbl 1067.76568
[22] Dong, G. J.; Lu, X. Y.; Zhuang, L. X., Discontinuity-capturing finite element computation of unsteady flow with adaptive unstructured mesh, Acta Mech. Sinica, 20, 4, 347-353 (2004)
[23] Engel, G.; Garikipati, K.; Hughes, T. J.R.; Larson, M. G.; Mazzei, L.; Taylor, R. L., Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Comput. Methods Appl. Mech. Engrg., 191, 34, 3669-3750 (2002) · Zbl 1086.74038
[24] Fang, C. C.; Sheu, T. W.H., Development of an adaptive discontinuity-capturing hyperbolic finite element model, Int. J. Numer. Methods Fluids, 44, 9, 957-973 (2004) · Zbl 1085.76521
[25] Farhat, C.; Harari, I.; Hetmaniuk, U., A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime, Comput. Methods Appl. Mech. Engrg., 192, 11-12, 1389-1419 (2003) · Zbl 1027.76028
[26] Galeao, A. C.; Almeida, R. C.; Malta, S. M.C., Finite element analysis of convection dominated reaction-diffusion problems, Appl. Numer. Math., 48, 2, 205-222 (2004) · Zbl 1055.65125
[27] Hansbo, P.; Larson, M. G., Coupling of continuous and discontinuous Galerkin methods for transport problems, Comput. Methods Appl. Mech. Engrg., 191, 29-30, 3213-3231 (2002) · Zbl 1101.76355
[28] Hansbo, P.; Larson, M. G., Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method, Comput. Methods Appl. Mech. Engrg., 191, 17-18, 1895-1908 (2002) · Zbl 1098.74693
[29] Houston, P.; Perugia, I.; Schötzau, D., Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator, Comput. Methods Appl. Mech. Engrg., 194, 2-5, 499-510 (2005) · Zbl 1063.78021
[30] Houston, P.; Schwab, C.; Süli, E., Discontinuos hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 39, 6, 2133-2163 (2002) · Zbl 1015.65067
[31] Hughes, T. J.R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origin of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127, 387-401 (1995) · Zbl 0866.76044
[32] Hughes, T. J.R.; Engel, G.; Mazzei, L.; Larson, M. G., A comparison of discontinuous and continuous Galerkin methods based on error estimates, conservation, robustness and efficiency, (Cockburn, B.; Karniadakis, G. E.; Shu, C.-W., Discontinuous Galerkin Methods: Theory, Computation and Applications (2000), Springer-Verlag) · Zbl 0946.65109
[33] Hughes, T. J.R.; Feijóo, G. R.; Mazzei, L.; Quincy, J.-B., The variational multiscale method—a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166, 3-24 (1998) · Zbl 1017.65525
[34] Hughes, T. J.R.; Franca, L. P.; Hulbert, G. M., A new finite element formulation for computational fluid dynamics. VIII. The Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73, 2, 173-189 (1989) · Zbl 0697.76100
[35] Hughes, T. J.R.; Mallet, M., A new finite element method for computational fluid dynamics: III. The generalized streamline operator for multidimensional advection-diffusion systems, Comput. Methods Appl. Mech. Engrg., 58, 3, 305-328 (1986) · Zbl 0622.76075
[36] Hughes, T. J.R.; Mallet, M.; Mizukami, A., A new finite element method for computational fluid dynamics: II. Beyond SUPG, Comput. Methods Appl. Mech. Engrg., 54, 3, 341-355 (1986) · Zbl 0622.76074
[37] T.J.R. Hughes, A. Masud, J. Wan, A stabilized mixed discontinuous Galerkin method for Darcy flow, Comput. Methods Appl. Mech. Engrg., in press, doi:10.1016/j.cma.2005.06.018; T.J.R. Hughes, A. Masud, J. Wan, A stabilized mixed discontinuous Galerkin method for Darcy flow, Comput. Methods Appl. Mech. Engrg., in press, doi:10.1016/j.cma.2005.06.018 · Zbl 1120.76040
[38] Hughes, T. J.R.; Wells, G. N., Conservation properties for the Galerkin and stabilized forms of the advection-diffusion and incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 194, 1141-1159 (2005) · Zbl 1091.76035
[39] Hughes, T. J.R.; Engel, G.; Mazzei, L.; Larson, M. G., The continuous Galerkin method is locally conservative, J. Comput. Phys., 163, 2, 467-488 (2000) · Zbl 0969.65104
[40] Johnson, C.; Nävert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 45, 285-312 (1984) · Zbl 0526.76087
[41] Johnson, C.; Pitkäranta, J., An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comput., 46, 173, 1-26 (1986) · Zbl 0618.65105
[42] Lesaint, P.; Raviart, P. A., On a finite element method for solving the neutron transport equation, (de Boor, C., Mathematical Aspects of Finite Elements in Partial Differential Equations (1974), Academic Press: Academic Press New York) · Zbl 0417.65056
[43] Machiels, L., A posteriori finite element bounds for output functionals of discontinuous Galerkin discretizations of parabolic problems, Comput. Methods Appl. Mech. Engrg., 190, 26-27, 3401-3411 (2001) · Zbl 0984.65100
[44] Palaniappan, J.; Haber, R. B.; Jerrard, R. L., A spacetime discontinuous Galerkin method for scalar conservation laws, Comput. Methods Appl. Mech. Engrg., 193, 33-35, 3607-3631 (2004) · Zbl 1077.65108
[45] Park, S.-H.; Tassoulas, J. L., A discontinuous Galerkin method for transient analysis of wave propagation in unbounded domains, Comput. Methods Appl. Mech. Engrg., 191, 36, 3983-4011 (2002) · Zbl 1034.74046
[46] W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation, Technical report, LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.; W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation, Technical report, LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.
[47] Sangalli, G., A discontinuous residual-free bubble method for advection-diffusion problems, J. Engrg. Math., 49, 149-162 (2004) · Zbl 1041.76545
[48] Shih, Y. T.; Elman, H. C., Modified streamline diffusion schemes for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 174, 1-2, 137-151 (1999) · Zbl 0957.76035
[49] Wells, G. N.; Garikipati, K.; Molari, L., A discontinuous Galerkin formulation for a strain gradient-dependent damage model, Comput. Methods Appl. Mech. Engrg., 193, 33-35, 3633-3645 (2004) · Zbl 1068.74084
[50] Werder, T.; Gerdes, K.; Schötzau, D.; Schwab, C., hp-Discontinuous Galerkin time stepping for parabolic problems, Comput. Methods Appl. Mech. Engrg., 190, 49-50, 6685-6708 (2001) · Zbl 0992.65103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.