×

Global existence for an inhomogeneous fluid. (Existence globale pour un fluide inhomogène.) (French. English summary) Zbl 1122.35091

Summary: We are interested in the existence and global uniqueness of the solution to the flow equation of an inhomogeneous fluid, when the initial velocity is in the critical homogeneous Besov space \(B_{p,1}^{-1+\frac{N}{p}}(\mathbb R^{ N })\). Let us note that this result followed from the results of H. Abidi which generalized the work of R. Danchin. However, the existence of solutions was obtained when \(1<p<2N\) and uniqueness was shown under the more restrictive assumption \(1<p\leqslant N\). Our result resolves the question of existence for all \(1<p<+\infty \) and uniqueness for \(1<p\leqslant 2N\). As an interesting application of this theorem, we obtain global existence for oscillating initial data.

MSC:

35Q30 Navier-Stokes equations
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
42B25 Maximal functions, Littlewood-Paley theory

References:

[1] Abidi, H., Équation de Navier-Stokes avec densité et viscosité variables dans l’espace critique · Zbl 1175.35099
[2] Antontsev, S.; Kazhikhov, A.; Monakhov, V., Boundary value problems in mechanics of nonhomogeneous fluids (1990) · Zbl 0696.76001
[3] Bony, J.-M., Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Annales scientifiques de l’École Normale Supérieure, 14, 209-246 (1981) · Zbl 0495.35024
[4] Cannone, M.; Meyer, Y.; Planchon, F., Séminaire sur les équations aux dérivées partielles (1994) · Zbl 0882.35090
[5] Chemin, J.-Y., Astérisque, 230 (1995) · Zbl 0829.76003
[6] Chemin, J.-Y., Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, Journal d’analyse mathématique, 77, 25-50 (1999) · Zbl 0938.35125
[7] Chemin, J.-Y.; Lerner, N., Flot de champs de vecteurs non-lipschitziens et équations de Navier-Stokes, J. Differential equations, 121, 247-286 (1995) · Zbl 0878.35089 · doi:10.1006/jdeq.1995.1131
[8] Danchin, R., The inviscid limit for density-dependent incompressible fluids · Zbl 1221.35295
[9] Danchin, R., Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141, 579-614 (2000) · Zbl 0958.35100 · doi:10.1007/s002220000078
[10] Danchin, R., Local theory in critical spaces for compressible viscous and heat-conductive gases, Commun. Partial differential equations, 26, 7-8, 1183-1233 (2001) · Zbl 1007.35071 · doi:10.1081/PDE-100106132
[11] Danchin, R., Density-dependent incompressible viscous fluids in critical spaces, Proceedings of the royal society of Edinburgh, 133A, 1311-1334 (2003) · Zbl 1050.76013 · doi:10.1017/S030821050000295X
[12] Danchin, R., Local and global well-posedness results for flows of inhomogeneous viscous fluids, Advances in differential equations, 9, 353-386 (2004) · Zbl 1103.35085
[13] Desjardins, B., Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space, Differential and integral equations, 10, 587-598 (1997) · Zbl 0902.76027
[14] Desjardins, B., Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Rational mech. Anal., 137, 135-158 (1997) · Zbl 0880.76090 · doi:10.1007/s002050050025
[15] Fernandez-Cara, E.; Guillén, F., The existence of nonhomogenous,viscous, and incompressible flow in unbounded domains, Comm. P.D.E., 17, 1253-1265 (1992) · Zbl 0767.35058 · doi:10.1080/03605309208820884
[16] Fleet, T. M., Differential analysis (1980) · Zbl 0442.34002
[17] Fujita, H.; Kato, T., On the Navier-Stokes initial value problem I, Archive for rational mechanics and analysis, 16, 269-315 (1964) · Zbl 0126.42301 · doi:10.1007/BF00276188
[18] Kato, T., Strong \({L}^p\)-solutions of the Navier-Stokes equation in \(\mathbb{{R}}^m,\) with applications to weak solutions, Math. Z., 187, 471-480 (1984) · Zbl 0545.35073 · doi:10.1007/BF01174182
[19] Kazhikov, V., Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauh, 216, 1008-1010 (1974)
[20] Ladyzhenskaya, O.; Solonnikov, V., The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids, J. Soviet Math., 9, 697-749 (1978) · Zbl 0401.76037 · doi:10.1007/BF01085325
[21] Lions, P.-L., Incompressible models, 1 (1996) · Zbl 0866.76002
[22] Meyer, Y., Ondelettes et opérateurs, 3 (1991) · Zbl 0694.41037
[23] Peetre, J., Duke University Mathematical, Series 1 (1976) · Zbl 0356.46038
[24] Runst, T.; Sickel, W.; Gruyter, De, Nonlinear analysis and applications (1996) · Zbl 0873.35001
[25] Simon, J., Nonhomogeneous viscous incompressible fluids, existence of velocity, density, and pressure, Siam J. Math. Anal., 21, 1093-1117 (1990) · Zbl 0702.76039 · doi:10.1137/0521061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.