×

Change-of-variance problem for linear processes with long memory. (English) Zbl 1115.62091

From the introduction: We assume that \(n\) observations \(X_1, \dots,X_n\) can be written as \[ X_i=\begin{cases} \mu+\sigma e_i,\quad & 1\leq i\leq k^*,\\ \mu+\tau e_i, \quad & k^*<i\leq n,\end{cases} \] where \(\mu, \sigma,\tau\) and \(k^*\) are unknown and \(e_i=\sum^\infty_{j=1}a_j \varepsilon_{i-j}\), where \[ a_j\sim c_0j^{-(1+\alpha) /2},\;(j\to\infty), \;0<\alpha<1,\;\sum^\infty_{j=1}\alpha_j^2=1,\tag{1} \] \(\{ \varepsilon_i\}\) is an i.i.d. process with \(E\varepsilon_1=0\), \(E \varepsilon_1^2 =1\). The last equality of (1) is to ensure that the variance of \(e_i\) is 1. The symbol “\(\sim\)” indicates that the ratio of left- and right-hand sides tends to one. Assuming that \(\sigma\neq\tau\), our goal is to investigate whether the variance of the observations has changed at an unknown time. That is, we want to test the null hypothesis \(H_0:k^*\geq n\) against the alternative \(H_A:1\leq k^*<n.\)

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62F03 Parametric hypothesis testing
62E20 Asymptotic distribution theory in statistics

Software:

longmemo
Full Text: DOI

References:

[1] Avram F, Taqqu MS (1987) Noncentral limit theorems and Appell polynomials. Ann. Probab. 15, 767–775 · Zbl 0624.60049 · doi:10.1214/aop/1176992170
[2] Beran J (1992) Statistical methods for data with long-range dependence. Statist. Sci. 7, 404–427 · doi:10.1214/ss/1177011122
[3] Beran J (1994) Statistics for Long-Memory Processes. Chapman and Hall, New York · Zbl 0869.60045
[4] Burke MD, Csörgo M, Csörgo S, Révész P (1979) Approximations of the empirical process when parameters are estimated. Ann. Prob. 7, 790–810 · Zbl 0433.62017 · doi:10.1214/aop/1176994939
[5] Csörgo M, Horváth L (1988) Invariance principles for change-point problems. J. Multivariate Anal. 27, 151–168 · Zbl 0656.62031 · doi:10.1016/0047-259X(88)90122-4
[6] Csörgo M, Horváth L (1993) Weighted Approximations in Probability and Statistics. Wiley, Chichester · Zbl 0770.60038
[7] Csörgo M, Horváth L (1997) Limit Theorems in Change-Point Analysis. Wiley, Chichester · Zbl 0884.62023
[8] Csörgo M, Révész P (1981) Strong Approximations in Probability and Statistics. Academic Press, New York
[9] Doukhan P, Oppenheim G, Taqqu MS (2003) Theory and applications of long-range dependence. Birkhäuser, Boston · Zbl 1005.00017
[10] Gombay E, Horváth L, Hušková M (1996) Estimators and tests for change in variances. Statistics & Decisions 14, 145–159 · Zbl 0864.62030
[11] Granger CW, Joyeux R (1980) An introduction to long-range time series models and fractional differencing. J. Time Ser. Anal. 1, 15–30 · Zbl 0503.62079 · doi:10.1111/j.1467-9892.1980.tb00297.x
[12] Ho HC, Hsing T (1997) Limit theorems for functionals of moving averages. Ann. Probab. 25, 1636–1669 · Zbl 0903.60018 · doi:10.1214/aop/1023481106
[13] Horváth L, Kokoszka P (1997) The effect of long-range dependence on change-point estimators. J. Statist. Planning Inference 64, 57–81 · Zbl 0946.62078 · doi:10.1016/S0378-3758(96)00208-X
[14] Hosking JRM (1981) Fractional differencing. Biometrika 68, 165–176 · Zbl 0464.62088 · doi:10.1093/biomet/68.1.165
[15] Inclán C, Tiao GC (1994) Use of cumulative sums of squares for retrospective detection of change of variance. J. Amer. Statist. Assoc. 89, 913–923 · Zbl 0825.62678 · doi:10.2307/2290916
[16] Kokoszka P, Leipus R (2003) Detection and estimation of changes in regime. In: Theory and applications of long-range dependence (Doukhan P, Oppenheim G, Taqqu MS Eds.), Birkhäuser, Boston, 325–337 · Zbl 1031.62075
[17] Koul HL, Surgailis D (2002) Asymptotic expansion of the empirical process of long memory moving averages. In: Empirical process techniques for dependent data, edited by H. Dehling, T. Mikosch and M. Sørensen. Birkhäuser, Boston, 213–239. · Zbl 1021.62072
[18] Lo AW (1991) Long-term memory in stock market prices. Econometrica 59, 1279–1313 · Zbl 0781.90023 · doi:10.2307/2938368
[19] Mori T, Oodaira H (1987) The functional iterated logarithm law for stochastic processes represented by multiple Wiener integrals. Probab. Theory Related Fields 76, 299–310 · Zbl 0615.60029 · doi:10.1007/BF01297487
[20] Robinson PM (1994a) Time series with strong dependence. In: Advances in Econometrics Sixth World Congress (Sims CA Ed.), Cambridge Univ. Press, Vol. 1, 47–95
[21] Robinson PM (1994b) Semiparametric analysis of long-memory time series. Ann. Statist. 22, 515–539 · Zbl 0795.62082 · doi:10.1214/aos/1176325382
[22] Samorodnitsky G, Taqqu MS (1994) Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall, London · Zbl 0925.60027
[23] Surgailis D (1982) Zones of attraction of self-similar multiple integrals. Lithuanian Math. J. 22, 327–340 · Zbl 0537.60043 · doi:10.1007/BF00966427
[24] Taqqu MS (1975) Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrschein. verw. Gebiete 31, 287–302 · Zbl 0303.60033 · doi:10.1007/BF00532868
[25] Wang L (2003) Limit theorems in change-point problems with multivariate long-range dependent observations. Statistics & Decisions 21, 219–236 · Zbl 1044.62005 · doi:10.1524/stnd.21.3.219.23429
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.