×

Regression models for functional data by reproducing kernel Hilbert spaces methods. (English) Zbl 1104.62043

Summary: Nonparametric regression models are developed when the predictor is a function-valued random variable \(X=\{X_{t}\}_{t\in T}\). Based on a representation of the regression function \(f(X)\) in a reproducing kernel Hilbert space, such models generalize the classical setting used in statistical learning theory. Two applications corresponding to scalar and categorical response random variables are performed on stock-exchange and medical data. The results of different regression models are compared.

MSC:

62G08 Nonparametric regression and quantile regression
46N30 Applications of functional analysis in probability theory and statistics
62H30 Classification and discrimination; cluster analysis (statistical aspects)

Software:

fda (R)
Full Text: DOI

References:

[1] Aguilera, A. M.; Gutiérrez, R.; Ocãna, F.; Valderama, M. J., Approximation of estimators in the PCA of stochastic process using B-splines, Commun. Statist. Comput. Simulation, 25, 3, 671-690 (1996) · Zbl 0937.62602
[2] Aguilera, A. M.; Ocãna, F.; Valderama, M. J., An approximated principal component prediction model for continuous-time stochastic process, Appl. Stochastic Models Data Anal., 13, 61-72 (1997) · Zbl 0885.62109
[3] Aguilera, A. M.; Ocana, F.; Valderama, M. J., Stochastic modeling for evolution of stock-prices by means of principal component analysis, Appl. Stochastic Models Business Ind., 15, 4, 227-234 (1999) · Zbl 0961.91009
[4] Aronszajn, N., Theory of reproducing kernels, Amer. Math. Soc. Trans., 63, 337-404 (1950) · Zbl 0037.20701
[5] Berlinet, A.; Thomas-Agnan, C., Reproducing Kernel Hilbert spaces in Probability and Statistics (2004), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 1145.62002
[6] Cardot, H.; Sarda, P., Estimation in generalized linear models for functional data via penalized likelihood, J. Multivariate Anal., 92, 24-41 (2005) · Zbl 1065.62127
[7] Cardot, H.; Ferraty, F.; Sarda, P., Functional linear model, Statist. Probab. Lett., 45, 11-22 (1999) · Zbl 0962.62081
[8] Craven, P.; Wahba, G., Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation, Numer. Math., 31, 377-403 (1979) · Zbl 0377.65007
[9] Cucker, F.; Smale, S., On the mathematical foundations of learning, Bull. Amer. Math. Soc., 39, 1, 1-49 (2001) · Zbl 0983.68162
[10] Duhamel, A.; Bourriez, J. L.; Devos, P.; Krystkowiak, P.; Destee, A.; Derambure, P.; Defebvre, L., Statistical tools for clinical gait analysis, Gait Posture, 20, 204-212 (2004)
[11] Escabias, M.; Aguilera, A. M.; Valderama, M. J., Principal component estimation of functional logistic regression: discussion of two different approaches, J. Nonparametric Statist., 16, 3-4, 365-384 (2004) · Zbl 1065.62114
[12] Escabias, M.; Aguilera, A. M.; Valderama, M. J., Modelling environmental data by functional principal component logistic regression, Environmetrics, 16, 1, 95-107 (2005)
[13] Ferraty, F.; Vieu, P., Curves discrimination: a nonparametric approach, Comput. Statist. Data Anal., 44, 161-173 (2003) · Zbl 1429.62241
[14] Ferraty, F.; Vieu, P., Nonparametric models for functional data with application in regression, time series prediction and curve discrimination, J. Nonparametric Statist., 16, 1-2, 111-125 (2004) · Zbl 1049.62039
[15] Girard, D., A fast Monte-Carlo cross-validation procedure for large least squares problems with noisy data, Numer. Math., 56, 1-23 (1989) · Zbl 0665.65010
[16] Golub, G. H.; Heath, M.; Wahba, G., Generalized cross validation as a method for choosing a good ridge parameter, Technometrics, 21, 215-224 (1979) · Zbl 0461.62059
[17] James, G. M., Generalized linear models with functional predictors, J. Roy. Statist. Soc. Ser. B, 64, 3, 411-432 (2002) · Zbl 1090.62070
[18] Kimeldorf, G. S.; Wahba, G., Some results on Tchebycheffian spline functions, J. Math. Anal. Appl., 33, 82-95 (1971) · Zbl 0201.39702
[19] Mendelson, S., Learnability in Hilbert spaces with reproducing Kernels, J. Complexity, 18, 152-170 (2002) · Zbl 1004.68131
[20] Parzen, E., An approach to time series anlysis, Ann. Math. Statist., 32, 951-989 (1961) · Zbl 0107.13801
[21] Preda, C.; Saporta, G., PLS regression on a sochastic process, Comput. Statist. Data Anal., 48, 1, 149-158 (2005) · Zbl 1429.62224
[22] Ramsay, J. O.; Silverman, B. W., Functional data analysis. Springer Series in Statistics (1997), Springer: Springer New York · Zbl 0882.62002
[23] Ramsay, J. O.; Silverman, B. W., Applied Functional Data Analysis: Methods and Case Studies (2002), Springer: Springer Berlin · Zbl 1011.62002
[24] Ratcliffe, S. J.; Leader, L. R.; Heller, G. Z., Functional data analysis with application to periodically stimulated foetal heart rate data. I: functional regression, Statist. Med., 21, 1103-1114 (2002)
[25] Ratcliffe, S. J.; Leader, L. R.; Heller, G. Z., Functional data analysis with application to periodically stimulated foetal heart rate data II: functional logistic regression, Statist. Med., 21, 1115-1127 (2002)
[26] Schölkopf, B.; Smola, A., Learning with Kernes (2002), MIT Press: MIT Press Cambridge
[27] Vapnik, V., Statistical Learning Theory (1998), Wiley: Wiley NY · Zbl 0935.62007
[28] Wahba, G., 1990. Spline models for observational data. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, vol. 59.; Wahba, G., 1990. Spline models for observational data. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, vol. 59. · Zbl 0813.62001
[29] Wahba, G., 2002. Soft and Hard Classification by Reproducing Kernel Hilbert Space Methods. Department of Statistics, University of Wisconsin. Technical Report 1067.; Wahba, G., 2002. Soft and Hard Classification by Reproducing Kernel Hilbert Space Methods. Department of Statistics, University of Wisconsin. Technical Report 1067. · Zbl 1106.62338
[30] Wahba, G.; Lin, X.; Gao, F.; Xiang, D.; Klein, R.; Klein, B., The biais-variance tradeoff and the randomized GACV, (Kearns, M.; Solla, S.; Cohn, D., Advances in Information Processing Systems, vol. 11 (1999), MIT Press: MIT Press Cambridge), 620-626
[31] Xiang, D.; Wahba, G., A generalized approximate cross validation for smoothing splines with non-Gaussian data, Statist. Sinica, 6, 675-692 (1996) · Zbl 0854.62044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.