×

Analyzing non-stationary signals using generalized multiple fundamental frequency model. (English) Zbl 1103.62084

Summary: We propose a new generalized multiple frequency model to analyze non-stationary signals. The model under the assumption of additive stationary errors can be used quite effectively to analyze different signals. We propose the usual least-squares estimators to estimate the unknown parameters and it is shown that the estimators are strongly consistent. We obtain the asymptotic distributions also. The performance of the proposed model is compared with the multiple frequency model using Monte Carlo simulations. Finally, several real data are analyzed using both the proposed model and the multiple frequency model.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62F12 Asymptotic properties of parametric estimators
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
62B10 Statistical aspects of information-theoretic topics
62E20 Asymptotic distribution theory in statistics
65C05 Monte Carlo methods
Full Text: DOI

References:

[1] Baldwin, A. J.; Thomson, P. J., Periodogram analysis of S. Carinae, Roy. Astron. Soc. New Zealand (Variable Star Section), 6, 31-38 (1978)
[2] Brillinger, D., Time Series and Data Analysis (Expanded Edn.) (1981), Holden-Day: Holden-Day San Francisco · Zbl 0486.62095
[3] Brillinger, D., 1986. Regression for randomly sampled spatial series: the trigonometric case. Essays in Time series and Allied Processes—Papers in Honor of E.J. Hannan. J. Appl. Probab. (23A), 275-289.; Brillinger, D., 1986. Regression for randomly sampled spatial series: the trigonometric case. Essays in Time series and Allied Processes—Papers in Honor of E.J. Hannan. J. Appl. Probab. (23A), 275-289. · Zbl 0594.62100
[4] Brown, E. N.; Czeisler, C. A., The statistical analysis of circadian phase and amplitude in constant-routine core-temperature data, J. Biol. Rhythms, 7, 3, 177-202 (1992)
[5] Brown, E. N.; Liuthardt, H., Statistical model building and model criticism for human circadian data, J. Biol. Rhythms, 14, 6, 609-616 (1999)
[6] Dahlhaus, R., Fitting time series models to non-stationary processes, Ann. Statist., 25, 1-37 (1997) · Zbl 0871.62080
[7] Draper, N. R.; Smith, H., Applied Regression Analysis (1981), Wiley: Wiley New York · Zbl 0548.62046
[8] Fuller, W. A., Introduction to Statistical Time Series (1976), Wiley: Wiley New York · Zbl 0353.62050
[9] Greenhouse, J. B.; Kass, R. E.; Tsay, R. S., Fitting nonlinear models with ARMA errors to biological rhythm data, Statist. Med., 6, 2, 167-183 (1987)
[10] Hannan, E. J., Nonlinear time series regression, J. Appl. Probab., 8, 767-780 (1971) · Zbl 0227.62052
[11] Hannan, E. J., Estimation of frequencies, J. Appl. Probab., 10, 510-519 (1973) · Zbl 0271.62122
[12] Hannan, E. J., Time series analysis, IEEE Trans. Automat. Control, AC-19, 706-715 (1974) · Zbl 0299.62051
[13] Hofman, M. A., Seasonal rhythms of neuronal activity in the human biological clock: a mathematical model, Biol. Rhythm Res., 32, 1, 17-34 (2001)
[14] Irizarry, R. A., Asymptotic distribution of estimates for a time-varying parameter in a harmonic model with multiple fundamentals, Statist. Sinica, 10, 1041-1067 (2000) · Zbl 0997.62066
[15] Isaksson, A.; Wennberg, A.; Zetterberg, L. H., Computer analysis of EEG signals with parametric models, Proc. IEEE, 69, 4, 451-461 (1981)
[16] Jennrich, R. I., Asymptotic properties of the non-linear least squares estimators, Ann. Math. Statist., 40, 633-643 (1969) · Zbl 0193.47201
[17] Kay, S. M., Modern Spectral Estimation: Theory and Applications (1988), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0658.62108
[18] Kundu, D., Asymptotic theory of the least squares estimators of sinusoidal signals, Statistics, 30, 221-238 (1997) · Zbl 1053.62520
[19] Kundu, D.; Nandi, S., A note on estimating the frequency of a periodic function, Signal Process., 84, 3, 653-661 (2004) · Zbl 1145.94356
[20] McAulay, R. J.; Quatieri, T. F., Speech analysis/synthesis based on sinusoidal representation, IEEE Trans. Acoust. Speech Process., ASSP-34, 4, 744-754 (1986)
[21] Nandi, S.; Kundu, D., Estimating the fundamental frequency of a periodic function, Statist. Methods Appl., 12, 3, 341-360 (2003) · Zbl 1175.62023
[22] Nandi, S.; Iyer, S. K.; Kundu, D., Estimation of frequencies in presence of heavy tail errors, Statist. Probab. Lett., 58, 3, 265-282 (2002) · Zbl 1045.62090
[23] Nandi, S.; Kundu, D.; Iyer, S. K., Amplitude modulated model for analyzing non stationary speech signals, Statistics, 38, 5, 439-456 (2004) · Zbl 1064.62006
[24] Ombao, H.; Raz, J.; von Sachs, R.; Malow, B., Automatic statistical analysis of bivariate non-stationary time series, J. Amer. Statist. Assoc., 96, 543-560 (2001) · Zbl 1018.62080
[25] Press, W. H.; Teukolsky, S. A.; Vellerling, W. T.; Flannery, B. P., Numerical Recipes in FORTRAN, The Art of Scientific Computing (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0778.65002
[26] Quinn, B. G.; Thomson, P. J., Estimating the frequency of a periodic function, Biometrika, 78, 1, 65-74 (1991) · Zbl 0717.62088
[27] Rice, J. A.; Rosenblatt, M., On frequency estimation, Biometrika, 75, 3, 477-484 (1988) · Zbl 0654.62077
[28] Richards, F. S.G., A method of maximum likelihood estimation, J. Roy. Statist. Soc. B, 23, 469-475 (1961) · Zbl 0104.13003
[29] Rodet, X., 1997. Musical sound signals analysis/synthesis: sinusoidal+residual and elementary waveform models. Proceedings of the IEEE Time-frequency and Time-scale Workshop, University of Warwick, Coventry, UK, pp. 1-10.; Rodet, X., 1997. Musical sound signals analysis/synthesis: sinusoidal+residual and elementary waveform models. Proceedings of the IEEE Time-frequency and Time-scale Workshop, University of Warwick, Coventry, UK, pp. 1-10.
[30] Sircar, P.; Syali, M. S., Complex AM signal model for non-stationary signals, Signal Process., 53, 35-45 (1996) · Zbl 0875.94075
[31] Walker, A. M., On the estimation of harmonic components in a time series with stationary independent residuals, Biometrika, 58, 21-26 (1971) · Zbl 0244.62064
[32] Wu, C. F.J., Asymptotic theory of non-linear least squares estimators, Ann. Statist., 9, 501-513 (1981) · Zbl 0475.62050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.