×

Periodic homogenization for inertial particles. (English) Zbl 1100.82023

The authors consider the movement of an inertial particle, i.e. a particle with mass, in a periodic velocity field \(v\) described by the equation \[ \tau \ddot x = v(x) -\dot x + \sigma \dot \beta \tag{1} \] where \(\beta(t)\) denotes the standard Brownian motion in \({\mathbb R}^d\), \(d\geq 1\). Within a formal framework it is shown that the behaviour at large scales and long times is governed by an effective diffusion equation. Furthermore, the effective diffusivity tensor is calculated.
In order to derive the effective differential equation time and space are rescaled according to \(t\to{t/ \varepsilon^2}\) and \(x\to x/\varepsilon\) modifying thereby equation (1). For the solution \(u^{\varepsilon}\) of the associated backward Kolmogorov equation a multiple scale expansion ansatz is made: \[ u^{\varepsilon}= u_{0} + \varepsilon u_{1} + \varepsilon^2 u_{2} + \ldots \] leading under appropriate conditions on the velocity field to the results. The expansion is justified by the hypoellipticity of the underlying differential equation which is proved in an appendix.
The results are compared with those for a passive tracer, that is a massless particle, as well as with numerical results obtained for the Taylor-Green field \(v_{TG}\) using among other things Monte Carlo simulations. Eventually, details for special fields (incompressible fluid, potential field) and the dependence on the Stokes number \(\tau\) are discussed.

MSC:

82C70 Transport processes in time-dependent statistical mechanics
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
76M35 Stochastic analysis applied to problems in fluid mechanics
76M50 Homogenization applied to problems in fluid mechanics
76F25 Turbulent transport, mixing

References:

[1] Allaire, G., Homogenization and two-scale convergence, SIAM J. Math. Anal., 23, 6, 1482-1518 (1992) · Zbl 0770.35005
[2] Aref, H.; Jones, S. W.; Mofina, S.; Zawadzki, I., Vortices, Kinematics and chaos, Physica D, 37, 1-3, 423-440 (1989)
[3] Battacharya, R., A central limit theorem for diffusions with periodic coefficients, Ann. Probability, 13, 385-396 (1985) · Zbl 0575.60075
[4] A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic Analysis of Periodic Structures, North-Holland, Amsterdam, 1978.; A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic Analysis of Periodic Structures, North-Holland, Amsterdam, 1978. · Zbl 0404.35001
[5] Castiglione, P.; Crisanti, A., Dispersion of passive tracers in a velocity field with non-\( \delta \)-correlated noise, Phys. Rev. E, 59, 4, 3926-3934 (1999)
[6] Crisanti, A.; Falcioni, M.; Provenzale, A.; Vulpiani, A., Passive advection of particles denser than the surrounding fluid, Phys. Lett. A, 150, 2, 79-84 (1990)
[7] G.T. Csanady, Turbulent Diffusion in the Environment, D. Reidel, Dordrecht, 1973.; G.T. Csanady, Turbulent Diffusion in the Environment, D. Reidel, Dordrecht, 1973. · Zbl 0113.19604
[8] Eaton, J. K.; Fessler, J. R., Preferential concentration of particles by turbulence, Int. J. Mult. Flow, 20, 169-209 (1994) · Zbl 1134.76536
[9] Ethier, S. N.; Kurtz, T. G., Markov processes, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics (1986), John Wiley & Sons Inc.: John Wiley & Sons Inc. New York · Zbl 0592.60049
[10] Falkovich, G.; Fouxon, A.; Stepanov, M. G., Acceleration of rain initiation by cloud turbulence, Nature, 419, 151-154 (2002)
[11] Falkovich, G.; Gawȩdzki, K.; Vergassola, M., Particles and fields in fluid turbulence, Rev. Modern Phys., 73, 4, 913-975 (2001) · Zbl 1205.76133
[12] Fannjiang, A.; Papanicolaou, G. C., Convection enhanced diffusion for periodic flows, SIAM J. Appl. Math., 54, 333-408 (1994) · Zbl 0796.76084
[13] M. Freidlin, Some remarks on the Smoluchowski-Kramers approximation, J. Statist. Phys. 117 (3-4) (2004) 617-634; M. Freidlin, Some remarks on the Smoluchowski-Kramers approximation, J. Statist. Phys. 117 (3-4) (2004) 617-634 · Zbl 1113.82055
[14] Gardiner, C. W., Handbook of Stochastic Methods (1985), Springer-Verlag: Springer-Verlag Berlin, for physics, chemistry and the natural sciences · Zbl 0862.60050
[15] Garnier, J., Homogenization in a periodic and time-dependent potential, SIAM J. Appl. Math., 57, 1, 95-111 (1997) · Zbl 0872.35009
[16] Hairer, M.; Pavliotis, G. A., Periodic homogenization for hypoelliptic diffusions., J. Stat. Phys., 117, 1-2, 261-279 (2004) · Zbl 1130.82026
[17] I. Karatzas, S.E. Shreve, Brownian motion, stochastic calculus, vol. 113, second ed., Graduate Texts in Mathematics, Springer-Verlag, New York, 1991; I. Karatzas, S.E. Shreve, Brownian motion, stochastic calculus, vol. 113, second ed., Graduate Texts in Mathematics, Springer-Verlag, New York, 1991 · Zbl 0734.60060
[18] Kipnis, C.; Varadhan, S. R.S., Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Comm. Math. Phys., 104, 1, 1-19 (1986) · Zbl 0588.60058
[19] Kloeden, P. E.; Platen, E., Numerical solution of stochastic differential equations, Applications of Mathematics (New York), vol. 23 (1992), Springer-Verlag: Springer-Verlag Berlin · Zbl 0925.65261
[20] Lacasta, A. M.; Sancho, J. M.; Romero, A. H.; Sokolov, I. M.; Lindenberg, K., From subdiffusion to superdiffusion of particles on solid surfaces, Phys. Rev. E, 70, 051104 (2004)
[21] Lasota, A.; Mackey, M. C., Chaos, Fractals, Noise (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0784.58005
[22] Lebowitz, J. L.; Rost, H., The Einstein relation for the displacement of a test particle in a random environment, Stochastic Process. Appl., 54, 2, 183-196 (1994) · Zbl 0812.60096
[23] Majda, A. J.; Kramer, P. R., Simplified models for turbulent diffusion: theory, numerical modelling and physical phenomena, Phys. Rep., 314, 237-574 (1999)
[24] Majda, A. J.; McLaughlin, R. M., The effect of mean flows on enhanced diffusivity in transport by incompressible periodic velocity fields, Stud. Appl. Math., 89, 245-279 (1993) · Zbl 0820.76078
[25] Mattingly, J. C.; Stuart, A. M., Geometric ergodicity of some hypo-elliptic diffusions for particle motions, Markov Processes Relat. Fields, 8, 2, 199-214 (2002) · Zbl 1014.60059
[26] Maxey, M. R., The motion of small spherical particles in a cellular flow field, Phys. Fluids, 30, 7, 1915-1928 (1987)
[27] Maxey, M. R., On the advection of spherical and nonspherical particles in a nonuniform flow, Philos. Trans. Roy. Soc. London Ser. A, 333, 1631, 289-307 (1990) · Zbl 0711.76045
[28] Maxey, M. R.; Riley, J. J., Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids, 26, 883-889 (1983) · Zbl 0538.76031
[29] McLaughlin, D. W.; Papanicolaou, G. C.; Pironneau, O. R., Convection of microstructure and related problems, SIAM J. Appl. Math., 45, 780-797 (1985) · Zbl 0622.76062
[30] Olla, S., Homogenization of diffusion processes in random fields, Lecture Notes (1994)
[31] Papanicolaou, G.; Varadhan, S. R.S., Ornstein-Uhlenbeck process in a random potential, Comm. Pure Appl. Math., 38, 6, 819-834 (1985) · Zbl 0617.60078
[32] Pardoux, E., Homogenization of linear and semilinear second order parabolic pdes with periodic coefficients: a probabilistic approach, J. Funct. Anal., 167, 498-520 (1999) · Zbl 0935.35010
[33] Pavliotis, G. A.; Stuart, A. M., White noise limits for inertial particles in a random field, Multiscale Model. Simul., 1, 4, 527-533 (2003), (electronic) · Zbl 1038.60060
[34] G.A. Pavliotis, A.M. Stuart, L. Band, Monte Carlo studies of effective diffusivities for inertial particles, in: Proceedings of MC2QMC’04, Springer, 2005.; G.A. Pavliotis, A.M. Stuart, L. Band, Monte Carlo studies of effective diffusivities for inertial particles, in: Proceedings of MC2QMC’04, Springer, 2005. · Zbl 1130.76063
[35] Rodenhausen, H., Einstein’s relation between diffusion constant and mobility for a diffusion model, J. Stat. Phys., 55, 5-6, 1065-1088 (1989) · Zbl 0714.60071
[36] Rogers, L. C.G.; Williams, D., Diffusions, Markov processes, and martingales, Cambridge Mathematical Library, vol. 1 (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0977.60005
[37] Rubin, J.; Jones, C. K.R. T.; Maxey, M., Settling and asymptotic motion of aerosol particles in a cellular flow field, J. Nonlinear Sci., 5, 4, 337-358 (1995) · Zbl 0841.76089
[38] Shaw, R. A., Particle-turbulence interactions in atmosphere clouds, Annu. Rev. Fluid Mech., 35, 183-227 (2003) · Zbl 1125.76401
[39] Shraiman, B. I., Diffusive transport in a Rayleigh-Benard convection cell, Phys. Rev. A, 36, 1, 261-267 (1987)
[40] Sigurgeirsson, H.; Stuart, A. M., Inertial particles in a random field, Stoch. Dyn., 2, 2, 295-310 (2002) · Zbl 1018.37033
[41] Sigurgeirsson, H.; Stuart, A. M., A model for preferential concentration, Phys. Fluids, 14, 12, 4352-4361 (2002) · Zbl 1185.76341
[42] Solomon, T. H.; Gollub, J. P., Passive transport in steady rayleigh-benard convection, Phys. Fluids, 31, 6, 1372-1378 (1988)
[43] Subramanian, G.; Brady, J. F., A Chapman-Enskog formalism for inertial suspensions, Physica A, 334, 3-4, 385-416 (2004)
[44] Subramanian, G.; Brady, J. F., Multiple scales analysis of the Fokker-Planck equation for simple shear flow, Physica A, 334, 3-4, 343-384 (2004)
[45] J.C. Vassilicos, L. Chen, S. Goto, D. Osborne. Persistent stagnation points and turbulent clustering of inertial particles, 2005, Preprint.; J.C. Vassilicos, L. Chen, S. Goto, D. Osborne. Persistent stagnation points and turbulent clustering of inertial particles, 2005, Preprint.
[46] Vergassola, M.; Avellaneda, M., Scalar transport in compressible flow, Physica D, 106, 1-2, 148-166 (1997) · Zbl 0962.76533
[47] Wang, L.-P.; Burton, T. D.; Stock, D. E., Quantification of chaotic dynamics for heavy particle dispersion in abc flow, Phys. Fluids A, 3, 5, 1073-1080 (1991)
[48] Wang, L. P.; Maxey, M. R.; Burton, T. D.; Stock, D. E., Chaotic dynamics of particle dispersion in fluids, Phys. Fluids A, 4, 8, 1789-1804 (1992) · Zbl 0753.76184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.