×

Multigaussian kriging for point-support estimation: incorporating constraints on the sum of the kriging weights. (English) Zbl 1096.62095

Summary: In the geostatistical analysis of regionalized data, the practitioner may not be interested in mapping the unsampled values of the variable that has been monitored, but in assessing the risk that these values exceed or fall short of a regulatory threshold. This kind of concern is part of the more general problem of estimating a transfer function of the variable under study. We focus on the multigaussian model, for which the regionalized variable can be represented (up to a nonlinear transformation) by a Gaussian random field. Two cases are analyzed, depending on whether the mean of this Gaussian field is considered known or not, which lead to the simple and ordinary multigaussian kriging estimators, respectively. Although both of these estimators are theoretically unbiased, the latter may be preferred to the former for practical applications since it is robust to a misspecification of the mean value over the domain of interest and also to local fluctuations around this mean value.
An advantage of multigaussian kriging over other nonlinear geostatistical methods, such as indicator and disjunctive kriging, is that it makes use of the multivariate distribution of the available data and does not produce order relation violations. The use of expansions into Hermite polynomials provides three additional results: first, an expression of the multigaussian kriging estimators in terms of series that can be calculated without numerical integration; second, an expression of the associated estimation variances; third, the derivation of a disjunctive-type estimator that minimizes the variance of the error when the mean is unknown.

MSC:

62M40 Random fields; image analysis
86A32 Geostatistics
Full Text: DOI

References:

[1] Barnes, RJ; Johnson, TB; Verly, G. (ed.); David, M. (ed.); Journel, AG (ed.); Maréchal, A. (ed.), Positive kriging, 231-244 (1984), Dordrecht
[2] Chica-Olmo M, Luque-Espinar JA (2002) Applications of the local estimation of the probability distribution function in environmental sciences by kriging methods. Inverse Probl 18(1):25-36 · Zbl 0987.62071 · doi:10.1088/0266-5611/18/1/302
[3] Chilès JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York, p 695 · Zbl 0922.62098
[4] Dennis JE, Schnabel RB (1983) Numerical methods for unconstrained optimization and nonlinear equations. Prentice-Hall (Prentice-Hall Series in Computational Mathematics), Englewood Cliffs, p 378 · Zbl 0579.65058
[5] Deutsch CV (1996) Correcting for negative weights in ordinary kriging. Comput Geosci 22(7):765-773 · doi:10.1016/0098-3004(96)00005-2
[6] Dowd PA (1982) Lognormal kriging—the general case. Math Geol 14(5):475-499 · doi:10.1007/BF01077535
[7] Emery X (2004) Testing the correctness of the sequential algorithm for simulating Gaussian random fields. Stoch Environ Res Risk Assess 18(6): 401-413. (DOI 10.1007/s00477-004-0211-7) · Zbl 1056.62107
[8] Emery X (2005a) Variograms of order ω: a tool to validate a bivariate distribution model. Math Geol 37(2):163-181. (DOI 10.1007/s11004-005-1307-4) · Zbl 1093.86001
[9] Emery X (2005b) Simple and ordinary multigaussian kriging for estimating recoverable reserves. Math Geol 37(3):295-319. (DOI 10.1007/s11004-005-1560-6) · Zbl 1122.86306
[10] Emery X (2006) Ordinary multigaussian kriging for mapping conditional probabilities of soil properties. Geoderma (in press). (DOI 10.1016/j.geoderma.2005.04.019)
[11] Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York, p 480
[12] Guibal, D.; Remacre, AZ; Verly, G. (ed.); David, M. (ed.); Journel, AG (ed.); Maréchal, A. (ed.), Local estimation of the recoverable reserves: comparing various methods with the reality on a porphyry copper deposit, 435-448 (1984), Dordrecht
[13] Herzfeld UC (1989) A note on programs performing kriging with nonnegative weights. Math Geol 21(3):391-393 · doi:10.1007/BF00893699
[14] Hochstrasser, UW; Abramowitz, M. (ed.); Stegun, IA (ed.), Orthogonal polynomials, 771-802 (1972), New York
[15] Journel AG (1980) The lognormal approach to predicting local distributions of selective mining unit grades. Math Geol 12(4):285-303 · doi:10.1007/BF01029417
[16] Journel AG (1983) Non parametric estimation of spatial distributions. Math Geol 15(3):445-468 · doi:10.1007/BF01031292
[17] Journel AG, Huijbregts CJ (1978) Mining Geostatistics. Academic Press, London, p 600
[18] Koziol JA (1986) Assessing multivariate normality: a compendium. Commun Stat Theory Methods 15:2763-2783 · Zbl 0603.62056 · doi:10.1080/03610928608829277
[19] Maréchal, A.; Verly, G. (ed.); David, M. (ed.); Journel, AG (ed.); Maréchal, A. (ed.), Recovery estimation: a review of models and methods, 385-420 (1984), Dordrecht
[20] Matheron G (1971) The theory of regionalized variables and its applications. Ecole Nationale Supérieure des Mines de Paris, Fontainebleau, p 212
[21] Matheron G (1974) Effet proportionnel et lognormalité ou: le retour du serpent de mer. Internal report N-374, Centre de Géostatistique, Ecole Nationale Supérieure des Mines de Paris, Fontainebleau, p 43
[22] Matheron, G.; Guarascio, M. (ed.); David, M. (ed.); Huijbregts, CJ (ed.), A simple substitute for conditional expectation: the disjunctive kriging, 221-236 (1976), Dordrecht
[23] Mecklin CJ, Mundfrom DJ (2004) An appraisal and bibliography of tests for multivariate normality. Int Stat Rev 72(1):123-138 · Zbl 1211.62095 · doi:10.1111/j.1751-5823.2004.tb00228.x
[24] Ortega J, Rheinboldt W (1970) Iterative solution of nonlinear equations in several variables. Academic Press (Computer Science and Applied Mathematics), New York, p 572 · Zbl 0949.65053
[25] Parker HM, Journel AG, Dixon WC (1979) The use of conditional lognormal probability distribution for the estimation of open-pit ore reserves in stratabound uranium deposits—a case study. In: O’Neil TJ (ed) Proceedings of the 16th APCOM international symposium. Society of Mining Engineers of the AIME, New York, pp 133-148
[26] Remacre AZ (1984) L’estimation du récupérable local - le conditionnement uniforme. Doctoral Thesis, Ecole Nationale Supérieure des Mines de Paris, Fontainebleau, p 99
[27] Rendu JM (1979) Normal and lognormal estimation. Math Geol 11(4):407-422 · doi:10.1007/BF01029297
[28] Rivoirard J (1990) A review of lognormal estimators for in situ reserves. Math Geol 22(2):213-221 · doi:10.1007/BF00891825
[29] Rivoirard J (1994) Introduction to disjunctive kriging and nonlinear geostatistics. Oxford University Press, Oxford, p 181
[30] Verly G (1983) The multigaussian approach and its applications to the estimation of local reserves. Math Geol 15(2):259-286 · doi:10.1007/BF01036070
[31] Verly, G.; Verly, G. (ed.); David, M. (ed.); Journel, AG (ed.); Maréchal, A. (ed.), The block distribution given a point multivariate normal distribution, 495-515 (1984), Dordrecht
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.