×

The union of a Riesz set and a Lust-Piquard set is a Riesz set. (English) Zbl 1089.43003

In the paper under review the authors are interested in the stability of the class of Riesz sets by union. Let \(G\) be a compact abelian group and \(\Gamma\) be its discrete dual group. A set \(\Lambda\subseteq\Gamma\) is called a Riesz set if every \(\mathcal M_\Lambda(G)=L^1_\Lambda(G)\), where \(\mathcal M(G)\) denotes the space of all regular Borel measures on \(G\), \(L^1(G)\) is its subspace of absolutely continuous measures, and the subscript \(\Lambda\) expresses that we are interested only in those measures \(\mu\) whose Fourier coefficients \(\widehat\mu(\gamma)=\int_G\overline\gamma\,d\mu\) vanish outside \(\lambda\) (\(\overline\gamma\) denotes the character associated with \(\gamma\)). An invariant mean \(M\) on \(L^\infty(G)\) is a continuous linear functional such that \(M(1)=\| M\| =1\) and \(M(f_x)=M(f)\) for every \(f\in L^\infty(G)\) and \(x\in G\) where \(f_x(t)=f(t-x)\). A function \(f\in L^\infty(G)\) is said to have a unique invariant mean if \(M(f)=\widehat f(0)\) for every invariant mean \(M\). A set \(\Lambda\subseteq\Gamma\) is called a Lust-Piquard set (or also totally ergodic) if \(\gamma f\) has a unique invariant mean for every \(f\in L^\infty_\Lambda(G)\) and every \(\gamma\in\Gamma\). The authors prove that the union of a Riesz set and a Lust-Piquard set is a Riesz set. Several results of other authors are consequences of this theorem: The union of a Rosenthal set and a Riesz set is a Riesz set because every Rosenthal set is a Lust-Piquard set; every Lust-Piquard set is a Riesz set; for \(G=\mathbb R/\mathbb Z\), \(\mathbb N\) is not a Lust-Piquard subset of \(\mathbb Z\) since \(\mathbb Z^-\) is a Riesz set and \(\mathbb Z\) is not; and others. Finally, the authors give an example of a Rosenthal subset of \(\mathbb Z\) which is dense in \(\mathbb Z\) for the Bohr topology.

MSC:

43A46 Special sets (thin sets, Kronecker sets, Helson sets, Ditkin sets, Sidon sets, etc.)
42A55 Lacunary series of trigonometric and other functions; Riesz products
43A77 Harmonic analysis on general compact groups
Full Text: DOI

References:

[1] A. Abdalian-Fakhim, Ensembles de type \((S)\); A. Abdalian-Fakhim, Ensembles de type \((S)\)
[2] Bishop, E., A general Rudin-Carleson theorem, Proc. Amer. Math. Soc., 13, 140-143 (1962) · Zbl 0101.08807
[3] Dressler, R. E.; Pigno, L., Une remarque sur les ensembles de Rosenthal et de Riesz, C.R. Acad. Science, Paris, 280, 1281-1282 (1975) · Zbl 0299.43001
[4] Godefroy, G.; Lust-Piquard, F., Some applications of geometry of Banach spaces to harmonic analysis, Colloq. Math., 60/61, 2, 443-456 (1990) · Zbl 0759.46019
[5] Kunen, K.; Rudin, W., Lacunarity and the Bohr topology, Math. Proc. Cambridge Philos. Soc., 126, 1, 117-137 (1999) · Zbl 0915.43003
[6] Lefèvre, P., Measures and lacunary sets, Studia Math., 133, 2, 145-161 (1999) · Zbl 0920.43004
[7] Li, D., A class of Riesz sets, Proc. Amer. Math. Soc., 119, 889-892 (1993) · Zbl 0796.43004
[8] Lefèvre, P.; Li, D.; Queffélec, H.; Rodríguez-Piazza, L., Some translation-invariant Banach function spaces which contain \(c_0\), Studia Math., 163, 2, 137-155 (2004) · Zbl 1048.43004
[9] Li, D.; Queffélec, H.; Rodríguez-Piazza, L., Some new thin sets in Harmonic analysis, J. d’Analyse Math., 86, 105-138 (2002) · Zbl 1018.43004
[10] Lust-Piquard, F., Eléments ergodiques et totalement ergodiques dans \(L^\infty(G)\), Studia Math., 69, 191-225 (1981) · Zbl 0476.43001
[11] Lust-Piquard, F., Means on \(CV_p(G)\)-subspaces of \(CV_p(G)\) with RNP and Schur property, Ann. Inst. Fourier, 39, 969-1006 (1989) · Zbl 0675.43001
[12] Lust-Piquard, F., Bohr local properties of \(C_\Lambda(T)\), Colloq. Math., 58, 29-38 (1989) · Zbl 0694.43005
[13] Meyer, Y., Spectres des mesures et mesures absolument continues, Studia Math., 30, 87-99 (1968) · Zbl 0159.42501
[14] Rosenthal, H. P., On trigonometric series associated with \(w^*\)-closed subspaces of continuous functions, J. Math. Mech., 17, 485-490 (1967) · Zbl 0194.16703
[15] Rubel, L. A.; Shields, A. L., Invariant subspaces of \(L^\infty\) and \(H^\infty \), J. Reine Angew. Math., 272, 32-44 (1975) · Zbl 0302.46039
[16] Rudin, W., Trigonometric series with gaps, J. Math. Mech., 9, 203-227 (1960) · Zbl 0091.05802
[17] Rudin, W., Invariant means on \(L^\infty \), Studia Math., 44, 219-227 (1972) · Zbl 0215.47004
[18] Rudin, W., Fourier Analysis on Groups (1990), Wiley: Wiley New York · Zbl 0107.09603
[19] Rudin, W., Functional Analysis (1991), McGraw-Hill: McGraw-Hill New York · Zbl 0867.46001
[20] W. Rudin, Analyse réelle et complexe, Masson.; W. Rudin, Analyse réelle et complexe, Masson.
[21] Talagrand, M., Some functions with a unique invariant mean, Proc. Amer. Math. Soc., 82, 253-256 (1981) · Zbl 0472.28007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.