×

Approximation error of the Whittaker cardinal series in terms of an averaged modulus of smoothness covering discontinuous signals. (English) Zbl 1087.94013

Summary: The Whittaker-Shannon-Kotel’nikov sampling theorem enables one to reconstruct signals \(f\) bandlimited to \([-\pi W,\pi W]\) from its sampled values \(f(k/W)\), \(k\in\mathbb{Z}\), in terms of \[ (S_Wf)(t)\equiv \sum^\infty_{k=-\infty}f\left(\frac kW\right)\text{sinc}(W_t-k)=f(t)\;(t\in\mathbb{R}). \] If \(f\) is continuous but not bandlimited, one normally considers \(\lim_{W\to\infty}(S_Wf)(t)\) in the supremum-norm, together with aliasing error estimates, expressed in terms of the modulus of continuity of \(f\) or its derivatives. Since in practice signals are however often discontinuous, this paper is concerned with the convergence of \(S_Wf\) to \(f\) in the \(L^p(\mathbb{R})\)-norm for \(1<p<\infty\), the classical modulus of continuity being replaced by the averaged modulus of smoothness \(\tau_r(f; W^{-1};M(\mathbb{R}))_p\). The major theorem enables one to sample any bounded signal \(f\) belonging to a certain subspace \(\Lambda^p\) of \(L^p(\mathbb{R})\), the jump discontinuities of which may even form a set of measure zero on \(\mathbb{R}\). A corollary gives the counterpart of the approximate sampling theorem, now in the \(L^p\)-norm. The averaged modulus, so far only studied for functions defined on a compact interval \([a,b]\), had first to be extended to functions defined on the whole real axis \(\mathbb{R}\). Basic tools are the de La Vallée Poussin means and a semi-discrete Hilbert transform.

MSC:

94A20 Sampling theory in information and communication theory
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
Full Text: DOI

References:

[1] Achieser, N. I., Theory of Approximation (1956), Ungar: Ungar New York · Zbl 0072.28403
[2] Bardaro, C.; Butzer, P. L.; Stens, R. L.; Vinti, G., Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals, Analysis (Munich), 23, 299-340 (2003) · Zbl 1049.41015
[3] Blomgren, P.; Chan, T. F., Color TV: Total variation methods for restoration of vector-valued images, IEEE Trans. Image Process., 7, 304-309 (1998)
[4] Boas, R. P., Entire Functions (1954), Academic Press: Academic Press New York · Zbl 0058.30201
[5] Bromwich, T. J.I’A., An Introduction to the Theory of Infinite Series (1964), St. Martin’s Press: St. Martin’s Press New York, reprint of the second ed. rev. (Students’ ed.), Macmillan, London · JFM 39.0306.02
[6] Brown, J. L., On the error in reconstructing a non-bandlimited function by means of the bandpass sampling theorem, J. Math. Anal. Appl.. J. Math. Anal. Appl., J. Math. Anal. Appl., 21, 699-84 (1968), Erratum · Zbl 0167.47804
[7] Butzer, P. L.; Berens, H., Semi-Groups of Operators and Approximation (1967), Springer-Verlag: Springer-Verlag Berlin · Zbl 0164.43702
[8] Butzer, P. L.; Splettstößer, W., A sampling theorem for duration-limited functions with error estimates, Inform. and Control, 34, 55-65 (1977) · Zbl 0363.94009
[9] Butzer, P. L.; Splettstößer, W.; Stens, R. L., The sampling theorem and linear prediction in signal analysis, Jahresber. Deutsch. Math.-Verein., 90, 1-70 (1988) · Zbl 0633.94002
[10] Butzer, P. L.; Stens, R. L., Sampling theory for not necessarily band-limited functions; a historical overview, SIAM Rev., 34, 40-53 (1992) · Zbl 0746.94002
[11] Chan, T. F.; Osher, S.; Shen, J., The digital TV filter and nonlinear denoising, IEEE Trans. Image Process., 10, 231-241 (2001) · Zbl 1039.68778
[12] C.-J. de La Vallée Poussin, Collected Works, vol. III, (Butzer, P. L.; Mawhin, J.; Vetro, P., Trigonometric and Fourier Series, Approximation Theory, Quasi-Analytic Functions (2004), Circolo Matematico di Palermo: Circolo Matematico di Palermo Palermo) · Zbl 1140.01309
[13] DeVore, R. A.; Lorentz, G. G., Constructive Approximation, Grundlehren Math. Wiss., vol. 303 (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0797.41016
[14] Dryanov, D. P., On the convergence and saturation problem of a class of discrete linear operators of entire exponential type in \(L_p(- \infty, \infty)\) spaces, (Sendov, Bl.; Petrushev, P.; Maleev, R.; Tashev, S., Constructive Theory of Functions, Proc. Conf.. Constructive Theory of Functions, Proc. Conf., Varna, Bulgaria, 1984 (1984), Bulgarian Academy of Sciences: Bulgarian Academy of Sciences Sofia), 312-318 · Zbl 0619.41016
[15] Dryanov, D. P., On the convergence and saturation problem of a sequence of discrete linear operators of exponential type in \(L_p(- \infty, \infty)\) spaces, Acta Math. Hungar., 49, 103-127 (1987) · Zbl 0614.41023
[16] Fang, G., Whittaker-Kotelnikov-Shannon sampling theorem and aliasing error, J. Approx. Theory, 85, 115-131 (1996) · Zbl 0845.94003
[17] Haber, S.; Shisha, O., An integral related to numerical integration, Bull. Amer. Math. Soc., 79, 930-932 (1973) · Zbl 0277.65009
[18] Haber, S.; Shisha, O., Improper integrals, simple integrals, and numerical quadrature, J. Approx. Theory, 11, 1-15 (1974) · Zbl 0277.65008
[19] Hansen, E. R., A Table of Series and Products (1975), Prentice Hall: Prentice Hall Englewood Cliffs, NJ · Zbl 0302.65039
[20] Higgins, J. R., Sampling Theory in Fourier and Signal Analysis: Foundations (1996), Oxford Science Publications, Clarendon: Oxford Science Publications, Clarendon Oxford · Zbl 0872.94010
[21] Hille, E., Introduction to Higher Mathematics, Analytic Function Theory, vol. 1 (1959), Ginn and Company: Ginn and Company Boston · Zbl 0088.05204
[22] N. Kirchhoff, Über die Approximation Riemann-integrierbarer und stetiger Funktionen durch diskrete Operatoren auf der reellen Achse, Doctoral Thesis, RWTH Aachen, 1993, p. 140; N. Kirchhoff, Über die Approximation Riemann-integrierbarer und stetiger Funktionen durch diskrete Operatoren auf der reellen Achse, Doctoral Thesis, RWTH Aachen, 1993, p. 140 · Zbl 0853.41010
[23] Marsden, M. J.; Richards, F. B.; Riemenschneider, S. D., Cardinal spline interpolation operators on \(l^p\) data, Indiana Univ. Math. J., 24, 677-689 (1974/1975) · Zbl 0297.41009
[24] Nikol’skiĭ, S. M., Approximation of Functions and Imbedding Theorems (1975), Springer-Verlag: Springer-Verlag Berlin · Zbl 0185.37901
[25] Rahman, Q. I.; Vértesi, P., On the \(L^p\) convergence of Lagrange interpolating entire functions of exponential type, J. Approx. Theory, 69, 302-317 (1992) · Zbl 0754.42005
[26] Ries, S.; Stens, R. L., A localization principle for the approximation by sampling series, (Korneĭchuk, N. P.; Stečkin, S. B.; Telyakovskiĭ, S. A., Theory of the Approximation of Functions, Proc. Conf.. Theory of the Approximation of Functions, Proc. Conf., Kiev, 1983 (1987), Nauka: Nauka Moscow), 507-510, (in Russian) · Zbl 0588.41013
[27] Sendov, Bl.; Popov, V. A., The Averaged Moduli of Smoothness, Pure and Applied Mathematics (1988), Wiley: Wiley Chichester · Zbl 0653.65002
[28] Splettstößer, W.; Stens, R. L.; Wilmes, G., On approximation by the interpolating series of G. Valiron, Funct. Approx. Comment. Math., 11, 39-56 (1981) · Zbl 0481.42007
[29] Stens, R. L., Approximation to duration-limited functions by sampling sums, Signal Process., 2, 173-176 (1980)
[30] Theis, M., Über eine Approximationsformel von de la Vallée Poussin, Math. Z., 3, 93-113 (1919) · JFM 47.0248.01
[31] Vogel, C. R.; Oman, M. E., Fast, robust total variation-based reconstruction of noisy, blurred images, IEEE Trans. Image Process., 7, 813-824 (1998) · Zbl 0993.94519
[32] Whittaker, J. M., The “Fourier” theory of the cardinal function, Proc. Edinburgh Math. Soc. (2), 1, 169-176 (1927-1929) · JFM 54.0308.02
[33] Zygmund, A., On singular integrals, Rend. Mat. Appl., 16, 468-505 (1957) · Zbl 0088.08302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.