×

Conformal field theory and elliptic cohomology. (English) Zbl 1071.55004

In [G. Segal, Sémin. Bourbaki, 40éme Année, Vol. 1987/88, Exp. No. 695, Astérisque 161–162, 187–201 (1988; Zbl 0686.55003)], the author proposed a geometric construction of a cohomology theory using conformal field theories. The theory should be related to the homotopy theoretic constructions of elliptic cohomology theories and their real version, the spectrum of topological modular forms [M. J. Hopkins, Li, Ta Tsien (ed.), Proceedings of the international congress of mathematicians, ICM 2002, Beijing: Higher Education Press. 291–317 (2000; Zbl 1031.55007)].
The paper at hand constructs an \(A_\infty\)-spectrum \(E=\omega^{-1} \Sigma^\infty {\mathcal E}_+\) and a map from \(E\) to \(K [\! [ q]\! ] [ q^{-1}]\) which gives the \(q\)-expansion of objects. The space \({\mathcal E}\) is the homotopy fibre of a map \(p_1: \tilde{{\mathcal E}} \to K ({\mathbb Z},4)\) with \( \tilde{{\mathcal E}}= \Omega B (B_{ell} \phi)\). The space \(B_{ell} \phi\) is the union of all spaces of so called elliptic bundles on a complex elliptic curve \(E_\tau\). More precisely, \(B_{ell} (\phi )\) is some type of classifying space associated with conformal field theories. In this context, a very rigorous and detailed definition of a conformal field theory is formulated. Specifically, the coherence conditions of modular functions are carefully worked out. There are several candidates for the class \(\omega\) in terms of theta functions of suitable lattices. One of them is the discriminant \(\Delta\) but there is no geometric reasoning for picking \(\Delta\).
The construction is quite in the spirit of [V. Snaith, Math. Proc. Camb. Philos. Soc. 89, 325–330 (1981; Zbl 0464.55007)] where \(K\)-theory was obtained by the same method from \( \mathbb CP^\infty\). The coefficients of \(E\) are not calculated but the relations to the Moonshine module and the Monster are discussed and many conjectures are formulated.

MSC:

55N34 Elliptic cohomology
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
17B69 Vertex operators; vertex operator algebras and related structures
20C34 Representations of sporadic groups
Full Text: DOI

References:

[1] Ando, M., Power operations in elliptic cohomology and representations of loop groups, Trans. Amer. Math. Soc., 352, 12, 5619-5666 (2000) · Zbl 0958.55016
[2] Borcherds, R. E., Monstrous moonshine and monstrous Lie superalgebras, Invent. Math., 109, 405-444 (1992) · Zbl 0799.17014
[3] F. Borceux, Handbook of categorical algebra 1-2, Encyclopedia of Mathematics and its Applications, Vols. 50-52, Cambridge University Press, Cambridge.; F. Borceux, Handbook of categorical algebra 1-2, Encyclopedia of Mathematics and its Applications, Vols. 50-52, Cambridge University Press, Cambridge.
[4] N. Bourbaki, Groups et algebres de Lie, Éléments de Mathématique, fascicule XXXIV, Hermann, Paris, 1968 (Chapitres 4,5 et 6).; N. Bourbaki, Groups et algebres de Lie, Éléments de Mathématique, fascicule XXXIV, Hermann, Paris, 1968 (Chapitres 4,5 et 6). · Zbl 0186.33001
[5] Conway, J. H.; Norton, S. P., Monstrous moonshine, Bull. AMS, 11, 308-339 (1979) · Zbl 0424.20010
[6] Conway, J. H.; Sloane, N. J.A., Sphere Packings, Lattices and Groups (1999), Springer: Springer Berlin · Zbl 0915.52003
[7] Deligne, P., Le symbole modére, Inst. Hautes Études Sci. Publ. Math., 73, 147-181 (1991) · Zbl 0749.14011
[8] Dong, C., Vertex algebras associated with even lattices, J. Algebra, 161, 1, 245-265 (1993) · Zbl 0807.17022
[9] Dong, C.; Li, H.; Mason, G., Twisted representations of vertex operator algebras, Math. Ann., 310, 571-600 (1998) · Zbl 0890.17029
[10] T. Fiore, Lax limits, lax adjoints and lax algebras, preprint, 2003.; T. Fiore, Lax limits, lax adjoints and lax algebras, preprint, 2003.
[11] I.B. Frenkel, Representation of Kac-Moody algebras and dual resonance model, in: M. Flato, et al. (Eds.), Applications of Group Theory in Theoretical Physics, Lectures in Applied Mathematics, Vol. 21, AMS, Providence, RI, 1985, pp. 325-353.; I.B. Frenkel, Representation of Kac-Moody algebras and dual resonance model, in: M. Flato, et al. (Eds.), Applications of Group Theory in Theoretical Physics, Lectures in Applied Mathematics, Vol. 21, AMS, Providence, RI, 1985, pp. 325-353. · Zbl 0558.17013
[12] Frenkel, I. B., Vertex algebras and algebraic curves, Séminaire Bourbaki, Vol. 1999/2000, Astérisque, 276, 299-339 (2002) · Zbl 0997.17015
[13] Frenkel, I. B.; Lepowsky, J.; Meurmann, A., Vertex operator algebras and the Monster, Pure and Applied Mathematics, Vol. 134 (1988), Academic Press: Academic Press New York · Zbl 0674.17001
[14] T. Gannon, C.S. Lam, Lattice and \(θ\); T. Gannon, C.S. Lam, Lattice and \(θ\) · Zbl 0766.33015
[15] Goddard, P.; Thorn, C. C., Compatibility of the dual Pomeron with unitarity and the absence of ghosts in the dual resonance model, Phys. Lett. B, 40, 2, 235-238 (1972)
[16] B.R. Greene, String theory on Calabi-Yau manifolds, preprint, hep-th/9702155.; B.R. Greene, String theory on Calabi-Yau manifolds, preprint, hep-th/9702155.
[17] Griess, R. L., The friendly giant, Invent. Math., 69, 1, 1-102 (1982) · Zbl 0498.20013
[18] M.J. Hopkins, M. Mahowald, The structure of 24 dimensional manifolds having normal bundles which lift to BO; M.J. Hopkins, M. Mahowald, The structure of 24 dimensional manifolds having normal bundles which lift to BO · Zbl 1012.57041
[19] M.J. Hopkins, H. Miller, in preparation.; M.J. Hopkins, H. Miller, in preparation.
[20] P. Hu, I. Kriz, \(D\); P. Hu, I. Kriz, \(D\)
[21] Y.Z. Huang, A nonmeromorphic extension of the Moonshine module vertex operator algebra, Moonshine, the Monster, and Related Topics (South Hadley, MA, 1994) Contemporary Mathematics Vol. 193, Amer. Math. Soc., Providence, RI, 1996, pp. 123-148.; Y.Z. Huang, A nonmeromorphic extension of the Moonshine module vertex operator algebra, Moonshine, the Monster, and Related Topics (South Hadley, MA, 1994) Contemporary Mathematics Vol. 193, Amer. Math. Soc., Providence, RI, 1996, pp. 123-148. · Zbl 0844.17020
[22] Huang, Y. Z., Two-dimensional Conformal Geometry and Vertex Operator Algebras, Progress in Mathematics, Vol. 148 (1997), Birkhäuser Boston, Inc: Birkhäuser Boston, Inc Boston, MA · Zbl 0884.17021
[23] Huang, Y. Z.; Lepowsky, J., Intertwining operator algebras and vertex tensor categories for affine Lie algebras, Duke Math. J., 99, 1, 113-134 (1999) · Zbl 0953.17016
[24] Hurwitz, A.; Courant, R., Vorlesungen über Allgemeine Funktionentheorie und Elliptische Funktionen (1944), Interscience Publishers, Inc: Interscience Publishers, Inc New York
[25] Jurisich, E.; Lepowsky, J.; Wilson, R. L., Realization of the Monster Lie algebra, Selecta Math. (N.S.), 1, 1, 129-161 (1995) · Zbl 0828.17029
[26] I. Kriz, On Spin and modularity in conformal field theory, Ann. Sci. de ENS 36 (4) (2003), 1, 57-112.; I. Kriz, On Spin and modularity in conformal field theory, Ann. Sci. de ENS 36 (4) (2003), 1, 57-112. · Zbl 1028.81050
[27] Lawvere, W. F., Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. USA, 50, 869-887 (1963) · Zbl 0119.25901
[28] May, J. P., A Concise Course in Algebraic Topology, Chicago Lectures in Mathematics (1999), University of Chicago Press: University of Chicago Press Chicago · Zbl 0923.55001
[29] Moore, G.; Seiberg, N., Classical and quantum conformal field theory, Comm. Math. Phys., 123, 177-254 (1989) · Zbl 0694.53074
[30] Mumford, D., Tata Lectures on Theta, Vol. 1, Progress in Mathematics, Vol. 28 (1983), Birkhäuser: Birkhäuser Boston · Zbl 0744.14033
[31] Mumford, D., Tata on Theta, Vol. 3, Progress in Mathematics, Vol. 97 (1991), Birkhäuser: Birkhäuser Boston · Zbl 0744.14033
[32] S.P. Norton, More on Moonshine, Computational Group Theory, Academic Press, London, 1984, pp. 185-195.; S.P. Norton, More on Moonshine, Computational Group Theory, Academic Press, London, 1984, pp. 185-195.
[33] Pressley, A.; Segal, G., Loop Groups, Oxford Mathematical Monographs (1986), Oxford Science Publications: Oxford Science Publications Oxford · Zbl 0618.22011
[34] J. Rognes, Elliptic cohomology and algebraic \(K\); J. Rognes, Elliptic cohomology and algebraic \(K\) · Zbl 0943.19001
[35] Sato, M.; Kimura, T., A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., 65, 1-155 (1977) · Zbl 0321.14030
[36] G. Segal, The definition of conformal field theory, preprint, cca. 1984.; G. Segal, The definition of conformal field theory, preprint, cca. 1984.
[37] G. Segal, Elliptic cohomology, Séminaire Bourbaki, Vol. 1987/88, Astérisque No. 161-162 1988; Exp. 695(4) (1989) 187-201.; G. Segal, Elliptic cohomology, Séminaire Bourbaki, Vol. 1987/88, Astérisque No. 161-162 1988; Exp. 695(4) (1989) 187-201. · Zbl 0686.55003
[38] Serre, J. P., A Course in Arithmetic, Graduate Texts in Mathematics, Vol. 7 (1973), Springer: Springer Berlin · Zbl 0256.12001
[39] V.P. Snaith, Algebraic cobordism and \(K\); V.P. Snaith, Algebraic cobordism and \(K\)
[40] Snaith, V. P., Localized stable homotopy of some classifying spaces, Math. Proc. Cambridge Philos. Soc., 89, 2, 325-333 (1981) · Zbl 0464.55007
[41] Thomas, C. B., Elliptic Cohomology, The University Series in Mathematics (1999), Kluwer Academic, Dordrecht, Plenum Publishers: Kluwer Academic, Dordrecht, Plenum Publishers New York · Zbl 0946.55001
[42] M.P. Tuite, Generalized moonshine and abelian orbifold constructions, Moonshine, the Monster and Related Topics (South Hadley, MA, 1994) Contemporary Mathematics, Vol. 193, Amer. Math. Soc., Providence, RI, 1996, pp. 353-368.; M.P. Tuite, Generalized moonshine and abelian orbifold constructions, Moonshine, the Monster and Related Topics (South Hadley, MA, 1994) Contemporary Mathematics, Vol. 193, Amer. Math. Soc., Providence, RI, 1996, pp. 353-368. · Zbl 0841.17016
[43] Tuite, M. P., Monstrous moonshine from orbifolds, Comm. Math. Phys., 146, 277-309 (1992) · Zbl 0815.11023
[44] Tuite, M. P., On the relationship between monstrous moonshine and the uniqueness of the moonshine module, Comm. Math. Phys., 166, 3, 495-532 (1995) · Zbl 0847.17025
[45] Verlinde, E., Fusion rules and modular transformations in \(2D\) conformal field theory, Nucl. Phys. B, 300, 360-376 (1988) · Zbl 1180.81120
[46] Zamolodchikov, A. B.; Fateev, V. A., Disorder fields in two-dimensional conformal quantum-field theory and \(N=2\) extended supersymmetry, Sov. Phys. JETP, 63, 913-919 (1986)
[47] Zhu, Y., Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc., 9, 237-302 (1996) · Zbl 0854.17034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.