×

The law of the iterated logarithm for the integrated squared deviation of a kernel density estimator. (English) Zbl 1067.62048

Summary: Let \(f_{n,K}\) denote a kernel estimator of a density \(f\) in \(\mathbb{R}\) such that \(\int_\mathbb{R} f^p(x)dx<\infty\) for some \(p>2\). It is shown, under quite general conditions on the kernel \(K\) and on the window sizes, that the centred integrated squared deviation of \(f_{n,K}\) from its mean, \[ \|f_{n,K}-Ef_{n,K} \|^2_2-E\|f_{n,K}-Ef_{n,K}\|^2_2, \] satisfies a law of the iterated logarithm (LIL). This is then used to obtain a LIL for the deviation from the true density, \(\|f_{n,K}-f\|^2_2-E\|f_{n,K}-f\|^2_2\).
The main tools are the J. Komlós, P. Major and G. Tusnády approximation, [Z. Wahrscheinlichkeitstheor. Verw. Geb. 32, 111–131 (1975; Zbl 0308.60029)], a moderate-deviation result for triangular arrays of weighted chi-square variables adapted from work of M. Pinsky [Proc. Am. Math. Soc. 22, 288–290 (1969; Zbl 0185.46601)], and an exponential inequality due to E. Giné, R. Latala and J. Zinn [E. Giné et al. (eds), High-Dimensional Probability II, Prog. Probab. 47, 13–38 (2000; Zbl 0969.60024)], for degenerate \(U\)-statistics applied in combination with decoupling and maximal inequalities.

MSC:

62G20 Asymptotic properties of nonparametric inference
62G07 Density estimation
62F15 Bayesian inference
Full Text: DOI

References:

[1] Beirlant, J. and Mason, D.M. (1995) On the asymptotic normality of Lp-norms of empirical functionals. Math. Methods Statist., 4, 1-19. · Zbl 0831.62019
[2] Bickel, P.J. and Rosenblatt, M. (1973) On some global measures of the deviations of density estimation. Ann. Statist., 1, 1071-1095. · Zbl 0275.62033 · doi:10.1214/aos/1176342558
[3] Csörgö, M. and Horváth, L. (1988) Central limit theorems for Lp-norms of density estimators. Z. Wahrscheinlichkeitstheorie Verw. Geb., 80, 269-291. · Zbl 0657.60026 · doi:10.1007/BF00356106
[4] de la Penã, V. and Giné, E. (1999) Decoupling: From Dependence to Independence. New York:, Springer-Verlag.
[5] de la Penã, V. and Montgomery-Smith, S. (1994) Bounds for the tail probabilities of U-statistics and quadratic forms. Bull. Amer. Math. Soc., 31, 223-227. · Zbl 0822.60014 · doi:10.1090/S0273-0979-1994-00522-1
[6] Dunford, N. and Schwartz, J.T. (1964) Linear Operators, Part II, 2nd printing. New York:, Wiley.
[7] Eggermont, P.P.B. and LaRiccia, V.N. (2001) Maximum Penalized Likelihood Estimation, Volume 1: Density Estimation. New York:, Springer-Verlag. · Zbl 0984.62026
[8] Fernique, X. (1970) Integrabilité des vecteurs gaussiens. C. R. Acad. Sci. Paris, Sér. A, 270, 1698-, 1699. · Zbl 0206.19002
[9] Giné, E., Latala, R. and Zinn, J. (2000) Exponential and moment inequalities for U-statistics. In E. Giné, D.M. Mason and J.A. Wellner (eds), High Dimensional Probability II, Progr. Probab. 47, pp. 13-38. Boston:, Birkhäuser. · Zbl 0969.60024
[10] Giné, E., Mason, D.M. and Zaitsev, A. Yu. (2003) The L1-norm density estimation process. Ann. Probab., 31, 719-768. · Zbl 1031.62026 · doi:10.1214/aop/1048516534
[11] Hall, P. (1984) Central limit theorem for integrated square error of multivariate nonparametric density estimators. J. Multivariate Anal., 14, 1-16. · Zbl 0528.62028 · doi:10.1016/0047-259X(84)90044-7
[12] Komloś, J., Major, P. and Tusnády, G. (1975) An approximation of partial sums of independent rvś and the sample distribution function, I. Z. Wahrscheinlichkeitstheorie Verw. Geb., 32, 111-131. · Zbl 0308.60029 · doi:10.1007/BF00533093
[13] Ledoux, M. and Talagrand, M. (1991) Probability in Banach Spaces. Berlin:, Springer-Verlag. · Zbl 0748.60004
[14] Mason, D.M. (2003) Representations for estimators of integral functionals of the density function. Austrian J. Statist., 32, 131-142., Abstract can also be found in the ISI/STMA publication URL:
[15] Montgomery-Smith, S.J. (1993) Comparison of sums of independent identically distributed random vectors. Probab. Math. Statist., 14, 281-285. · Zbl 0827.60005
[16] Nadaraya, N.A. (1989) Nonparametric Estimation of Probability Densities and Regression Curves. Amsterdam:, Kluwer. · Zbl 0709.62039
[17] Pinsky, M. (1966) An elementary derivation of Khintchinés estimate for large deviations. Proc. Amer. Math. Soc., 22, 288-290. JSTOR: · Zbl 0185.46601 · doi:10.2307/2036972
[18] Rosenblatt, M. (1975) A quadratic measure of the deviation of two-dimensional density estimates and a test of independence. Ann. Statist., 3, 1-14. · Zbl 0325.62030 · doi:10.1214/aos/1176342996
[19] Shorack, G. and Wellner, J. (1986) Empirical Processes with Applications to Statistics. New York:, Wiley. · Zbl 1170.62365
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.