×

Nonparametric conditional predictive regions for time series. (English) Zbl 0990.62083

Summary: Several nonparametric predictors based on the Nadaraya–Watson kernel regression estimator have been proposed in the literature. They include the conditional mean, the conditional median, and the conditional mode. We consider three types of predictive regions for these predictors – the conditional percentile interval (CPI), the shortest conditional modal interval (SCMI), and the maximum conditional density region (MCDR). Further, we introduce a data-driven method for the choice of the optimal bandwidth. This method is based on the minimization of a cross-validation criterion given three different types of predictors.
When the underlying conditional distribution is multi-modal, we show that the MCDR is much shorter in length than the CPI or SCMI irrespective of the type of predictor used. This point is illustrated using both a simulated and a real data set.

MSC:

62M20 Inference from stochastic processes and prediction
62G08 Nonparametric regression and quantile regression
Full Text: DOI

References:

[1] Berlinet, A., Gannoun, A., Matzner-Løber, E., 1998a. Asymptotic normality of the nonparametric estimator of conditional median under mixing conditions. Technical Report No. 97-05, University of Montpellier II, submitted for publication, to Statistics. · Zbl 0926.62036
[2] Berlinet, A.; Gannoun, A.; Matzner-Løber, E.: Normalité asymptotique d’estimateurs convergents du mode conditionnel. Canadian J. Statist. 26, 365-380 (1998) · Zbl 0926.62036
[3] Bosq, D., 1996. Nonparametric Statistics for Stochastic Processes. Springer, New York. · Zbl 0857.62081
[4] Bradley, R.C., 1985. Basic properties on strong mixing conditions. In: Lasifescu, M. (Ed.), Proceedings of the 7th Conference on Probability Theory, pp. 65–72.
[5] Chui, S-T.: A comparative review of bandwidth selection for kernel density estimation. Statistica sinica 6, 129-145 (1996) · Zbl 0850.62359
[6] Collomb, G.: Propriétés de convergence presque complète du prédicteur à noyau.. Z. für wahrscheinlichkeitstheorie 66, 441-460 (1984) · Zbl 0525.62046
[7] Collomb, G.; Härdle, W.; Hassani, S.: A note on prediction via estimation of the conditional mode function. J. statist. Plan. inference 15, 227-236 (1987) · Zbl 0614.62045
[8] Fan, J.: Design-adaptive nonparametric regression. J. amer. Statist. assoc. 87, 998-1004 (1992) · Zbl 0850.62354
[9] Gannoun, A.: Estimation non paramétrique de la médiane conditionnelle: médianogramme et méthode du noyau. Publication de l’institut de statistique de l’université de Paris 45, 11-22 (1990)
[10] Györfi, L., Härdle, W., Sarda, P., Vieu, P., 1990. Nonparametric Curve Estimation from Time Series. Springer, Heidelberg. · Zbl 0697.62038
[11] Hall, P.; Wolff, R. C. L.: Properties of invariant distributions and Lyapunov exponents for chaotic logistic maps. J. roy. Statist. soc. 57, 439-452 (1995) · Zbl 0813.62034
[12] Härdle, W.; Vieu, P.: Kernel regression smoothing of time series. J. time ser. Anal. 13, 209-232 (1992) · Zbl 0759.62016
[13] Hart, J. D.: Kernel regression estimation with time series errors. J. roy. Statist. soc. 19, 173-187 (1991) · Zbl 0800.62215
[14] Hyndman, R. J.: Highest-density forecast regions for non-linear and non-normal time series models.. J. forecast 14, 431-441 (1995)
[15] Hyndman, R. J.; Bashtannyk, D. M.; Grunwald, G. K.: Estimating and visualizing conditional densities.. J. comput. Graph. statist. 5, 315-336 (1996)
[16] Jones, M. C.; Marron, J. S.; Sheather, S. J.: A brief survey of bandwidth selection for density estimation. J. amer. Statist. assoc. 85, 401-407 (1996) · Zbl 0873.62040
[17] Jones, M. C.; Marron, J. S.; Sheather, S. J.: Progress in data-based bandwidth selection for kerneldensity estimation. Comput. statist. Data anal. 11, 337-381 (1996) · Zbl 0897.62037
[18] Lientz, B. P.: Results on nonparametric modal intervals. SIAM J. Appl. math. 19, 356-366 (1970) · Zbl 0207.18703
[19] Lientz, B. P.: Properties of modal intervals. SIAM J. Appl. math. 23, 1-5 (1972) · Zbl 0222.62012
[20] Matzner-Løber, E.; Gannoun, A.; De Gooijer, J. G.: Nonparametric forecasting: a comparison of three kernel-based methods. Comm. statist. Theory meth. 27, 1593-1617 (1998) · Zbl 0930.62037
[21] Pham, T. D.; Tran, L. T.: Some strong mixing properties of time serie models. Stochastic processes appl. 19, 297-303 (1985) · Zbl 0564.62068
[22] Roussas, G. G.: Nonparametric estimation of the transition distribution function of a Markov process. Ann. math. Statist. 40, 1386-1400 (1969) · Zbl 0188.50501
[23] Roussas, G. G.; Ioannides, D.: Moments inequalities for mixing sequences of random variables. Stochastic anal. 5, 61-120 (1987) · Zbl 0619.60022
[24] Silverman, B.W., 1986. Density Estimation for Statistics and Data Analysis. Chapman & Hall, London. · Zbl 0617.62042
[25] Yao, Q.; Tong, H.: On prediction and chaos in stochastic systems. Philos. trans. Roy. soc. 348, 357-369 (1994) · Zbl 0859.62086
[26] Yao, Q.; Tong, H.: On initial-condition sensitivity and prediction in nonlinear stochastic systems. Bull. int. Statist. institute 10.3, 395-412 (1995)
[27] Yao, Q., 1995. Conditional predictive regions for stochastic processes. Technical Report, Institute of Mathematics and Statistics, University of Kent at Canterbury, UK.
[28] Young, P.C., 1993. Time variable and state dependent modelling of nonstationary and nonlinear time series. In: Subba Rao, T. (Ed.), Developments in Time Series Analysis. Chapman & Hall, London, pp. 374–413. · Zbl 0880.62100
[29] Young, P. C.; Beven, K. J.: Data-based mechanistic modelling and the rainfall-flow nonlinearity. Environmetrics 5, 335-363 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.