×

Molecular propagation through small avoided crossings of electron energy levels. (English) Zbl 0965.81138

Authors’ introduction: This is the second of a pair of papers on the propagation of molecular wave packets through avoided crossings of electronic energy levels in a limit where the gap between the levels shrinks as the nuclear masses are increased. Generic, minimal multiplicity avoided crossings can be classified into six types [G. A. Hagedorn, J. Phys. A, Math. Gen. 31, 369-383 (1998; Zbl 0956.81014)]. Our first paper [G. A. Hagedorn and A. Joye, Ann. Inst. Henri Poincaré Phys, Théor. A 68, 85-134 (1998; Zbl 0915.35090)] deals with Type 1 and 2; the present paper deals with Type 3, 4, 5, and 6.
In Type 1 and 2 avoided crossings, the electron energy levels essentially depend on only one nuclear configuration parameter. Because of rotational symmetry, this is the case for all diatomic molecules. The results of Part I show that in Type 1 and 2 avoided crossings, transitions between the levels are correctly described by the Landau-Zener formula.
In Type 3, 4, 5, and 6 avoided crossings, the electron energy levels essentially depend (respectively) on 2, 2, 3, md 4 nuclear configuration parameters. In practice, these arise in polyatomic molecules, or in diatomic or polyatomic systems in external fields. Molecular propagation through these more complicated avoided crossings is not governed directly by the Landau-Zener formula, and electronic transition probabilities depend on the shape of the nuclear wave packet. Intuitively, this is because different pieces of the wave packet feel different size minimum gaps between the electronic levels. As we explain in more detail below, the correct transition probability can be determined by decomposing the nuclear wave packet into infinitesimal pieces, using a different Landau-Zener formula for each infinitesimal piece, and then doing an integration.

MSC:

81V55 Molecular physics
81Q15 Perturbation theories for operators and differential equations in quantum theory
Full Text: DOI

References:

[1] DOI: 10.1007/BF01205036 · Zbl 0448.70013 · doi:10.1007/BF01205036
[2] Hagedorn G. A., Ann. Inst. H. Poincaré Sect. A 42 pp 363– (1985)
[3] DOI: 10.2307/2007093 · Zbl 0619.35094 · doi:10.2307/2007093
[4] Hagedorn G. A., Ann. Inst. H. Poincaré Sect. A 47 pp 1– (1987)
[5] DOI: 10.1007/BF01239023 · doi:10.1007/BF01239023
[6] DOI: 10.1007/BF01223372 · doi:10.1007/BF01223372
[7] DOI: 10.1007/BF01114678 · doi:10.1007/BF01114678
[8] DOI: 10.1007/BF02099068 · Zbl 0723.35068 · doi:10.1007/BF02099068
[9] Hagedorn G. A., Memoirs Amer. Math. Soc. pp 111– (1994)
[10] Hagedorn G. A., Differential Equations and Mathematical Physics, Proc. Int. Conf., Univ. Alabama at Birmingham, March 13 pp 85– (1994)
[11] DOI: 10.1088/0305-4470/31/1/031 · Zbl 0956.81014 · doi:10.1088/0305-4470/31/1/031
[12] Hagedorn G. A., Ann. Inst. H. Poincaré Sect. A 68 pp 85– (1998)
[13] Joye A., J. Phys. 26 pp 6517– (1993)
[14] Joye A., Asymptotic Analysis 9 pp 209– (1994)
[15] DOI: 10.1016/0003-4916(91)90297-L · Zbl 0875.60022 · doi:10.1016/0003-4916(91)90297-L
[16] DOI: 10.1103/PhysRevA.44.4280 · doi:10.1103/PhysRevA.44.4280
[17] Joye A., J. Phys. 24 pp 753– (1991)
[18] DOI: 10.1016/0375-9601(92)90806-W · doi:10.1016/0375-9601(92)90806-W
[19] DOI: 10.1063/1.530255 · Zbl 0776.35056 · doi:10.1063/1.530255
[20] DOI: 10.1103/PhysRevA.48.2598 · doi:10.1103/PhysRevA.48.2598
[21] DOI: 10.1137/S0036141093250852 · Zbl 0830.34047 · doi:10.1137/S0036141093250852
[22] DOI: 10.1007/BF02099304 · Zbl 0821.47051 · doi:10.1007/BF02099304
[23] DOI: 10.1143/JPSJ.5.435 · doi:10.1143/JPSJ.5.435
[24] DOI: 10.1016/S0003-4916(87)80012-X · Zbl 0649.35024 · doi:10.1016/S0003-4916(87)80012-X
[25] DOI: 10.1007/BF02099269 · Zbl 0754.35099 · doi:10.1007/BF02099269
[26] DOI: 10.1007/BF02097058 · Zbl 0778.35088 · doi:10.1007/BF02097058
[27] DOI: 10.1142/S0129055X95000116 · Zbl 0835.34098 · doi:10.1142/S0129055X95000116
[28] Martinez A., Ann. Inst. H. Poincaré Sect. A 50 pp 239– (1989)
[29] DOI: 10.1016/0022-0396(91)90139-Z · Zbl 0737.35046 · doi:10.1016/0022-0396(91)90139-Z
[30] DOI: 10.1007/BF02104119 · Zbl 0737.35047 · doi:10.1007/BF02104119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.