×

Simulation of surface pitting due to contact loading. (English) Zbl 0963.74546

From the summary: We present a computational model for simulation of surface pitting of mechanical elements subjected to rolling and sliding contact conditions. The two-dimensional computational model is restricted to modeling of high-precision mechanical components with fine surface finishing and good lubrication, where the cracks leading to pitting are initiated in the area of largest contact stresses at certain depth under the contacting surface. Hertz contact conditions with addition of friction forces are assumed and the position and magnitude of the maximum equivalent stress is determined by the finite element method. When the maximum equivalent stress exceeds the local material strength, it is assumed that the initial crack develops along the slip line in a single-crystal grain. The virtual crack extension method in the framework of finite element analysis is then used for two-dimensional simulation of the fatigue crack propagation under contact loading from the initial crack up to the formation of the surface pit.

MSC:

74M15 Contact in solid mechanics
74R99 Fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Johnson, Proc. Inst. Mech. Engrs. 203 pp 151– (1989) · doi:10.1243/PIME_PROC_1989_203_100_02
[2] Keer, ASME J. Lubr. Technol. 105 pp 198– (1983) · doi:10.1115/1.3254565
[3] Miller, Proc. Roy. Soc. London A397 pp 197– (1985) · doi:10.1098/rspa.1985.0011
[4] Bower, ASME J. Trib. 110 pp 704– (1988) · doi:10.1115/1.3261717
[5] and , ’Fracture mechanics approach to tribology problems’, The 20th Symp. of Fracture Mechanics, Lehigh University-Bethlehem, 1987, pp. 668-687.
[6] Murakami, STLE Trib Trans. 37 pp 445– (1994) · doi:10.1080/10402009408983316
[7] Hanson, STLE Trib. Trans. 35 pp 451– (1992) · doi:10.1080/10402009208982143
[8] Leng, Wear 122 pp 33– (1988) · doi:10.1016/0043-1648(88)90004-X
[9] Cheng, ASME J. Trib. 116 pp 2– (1994) · doi:10.1115/1.2927042
[10] and , Moderne Wälzlagertechnik, Vogel Buchverlag, Würzburg, 1991, (in German).
[11] Glodez, Fatigue Fract. Engng. Mat. Struct. 20 pp 71– (1997) · doi:10.1111/j.1460-2695.1997.tb00403.x
[12] Contact Mechanics, Cambridge University press, Cambridge, 1985. · Zbl 0599.73108 · doi:10.1017/CBO9781139171731
[13] ’The fracture mechanics model of gear flanks fatigue’, Ph. D. Thesis, Faculty of Mechanical Engineering, University of Maribor, 1996 (in Slovenian).
[14] Zhou, ASME J. Trib. 111 pp 605– (1989) · doi:10.1115/1.3261984
[15] Miller, Mater. Sci. Technol. 9 pp 453– (1993) · doi:10.1179/026708393790172178
[16] Winter, Antriebstechnik 29 pp 65– (1990)
[17] Navarro, Philos. Mag. A 57 pp 15– (1988) · doi:10.1080/01418618808204496
[18] Sun, Fatigue Fract. Engng. Mat. Struct. 14 pp 277– (1991) · doi:10.1111/j.1460-2695.1991.tb00658.x
[19] and , ’Crack initiation and crack propagation in the contact area of two cylinders’, in et al., Localised Damage IV, Comput.-Aided Assessment and Control, Computational Mechanics Publications, Southampton, 1996, pp. 675-682.
[20] and , Fracture Mechanics, Delftse U. M., Co-publication of Edward Arnold, Delft, 1991.
[21] Hellen, Int. J. Numer. Meth. Engng. 9 pp 187– (1975) · Zbl 0293.73049 · doi:10.1002/nme.1620090114
[22] Hellen, Int. J. Numer. Meth. Engng. 28 pp 929– (1989) · doi:10.1002/nme.1620280414
[23] Flašker, Commun. Numer. Meth. Engng. 11 pp 49– (1995) · Zbl 0813.73057 · doi:10.1002/cnm.1640110108
[24] ASTM E 399-83, ’Standard test method for plane-strain fracture toughness of metallic materials’, 1983.
[25] DIN 3990, Tragfähigkeitsberechnungen von Stirnrädern, Beuth Verlag GMBH, 1987.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.