×

Examples of Chebyshev sets in matrix spaces. (English) Zbl 0943.41015

Let A be a quadratic matrix of order \(n\) with complex elements (we denote this by \(A\in \mathbb{C}^{n\times n}\)) and \(U\Sigma V^{\ast }\) \(the\) singular value decomposition of \(A,\) where \(U,\) \(V\) are unitary matrices, \(\Sigma =\text{diag}( \sigma _{1}( A),\sigma _{2}( A) ,\dots,\sigma _{n}( A)) \) and \(\sigma _{1}( A) \geq \sigma _{2}( A) \geq \cdots \geq \sigma _{n}( A) \geq 0\) are the singular values of \(A.\) For \(k=1,2,\dots,n\) let us consider \( S_{1}^{(k)}=\{ S\in \mathbb{C}^{n\times n}:\sum \sigma _{j_{1}}( S) \dots\sigma _{j_{k}}( S) \leq 1\} .\) The authors prove that the set \( S_{1}^{( k) }( 1\leq k\leq n) \) is a Chebyshev set in \(\mathbb{C}^{n\times n}\) with respect to the spectral norm. One obtains the formula for the distance from \(A\in \mathbb{C} ^{n\times n}\) to \( S_{1}^{( k) }\) and proves that the metric projection \( P_{S_{1}^{(k)}}\) is globally Lipschitz-continuous.

MSC:

41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
41A50 Best approximation, Chebyshev systems
Full Text: DOI

References:

[1] Anderson, J., On normal derivations, Proc. Amer. Math. Soc., 38, 135-140 (1973) · Zbl 0255.47036
[2] Ph. Benilan and H. Attouch, Opérateurs accrétifs, in Sém. sur les semi-groups et les opérateurs non linéaires, Exposé no. 1., Publ. Math. d’Orsay, Paris, 1970-1971.; Ph. Benilan and H. Attouch, Opérateurs accrétifs, in Sém. sur les semi-groups et les opérateurs non linéaires, Exposé no. 1., Publ. Math. d’Orsay, Paris, 1970-1971.
[3] Berens, H.; Finzel, M., A continuous selection of the metric projection in matrix spaces, (Collatz, L.; Meinardus, G.; Nürnberger, G., Numerical Methods of Approximation Theory, Vol. 8. Numerical Methods of Approximation Theory, Vol. 8, ISNM, 81 (1987)), 21-29 · Zbl 0642.41023
[4] Berens, H.; Schmid, H. J., An example of a Chebyshev set: The complex case, Rocky Mountain J. Math., 19, 67-71 (1988) · Zbl 0687.41025
[5] Halmos, P. R., Positive approximants of operators, Indiana Math. J., 21, 951-960 (1972) · Zbl 0263.47018
[6] Horn, R. A.; Johnson, Ch. R., Matrix Analysis (1985), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0576.15001
[7] Robertson, A. G., Strongly Chebyshev subspaces of matrices, J. Approx. Theory, 55, 264-269 (1988) · Zbl 0671.41025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.