×

Henselian valued stable fields. (English) Zbl 0919.16010

The author studies relations between the exponent and the index of a finite-dimensional central division algebra over a field \(E\) [cf. e.g. P. M. Cohn, Algebra 3, J. Wiley (1991; Zbl 0719.00002), Ch. 7]. Thus \(E\) is called stable if the index equals the exponent for each such algebra, and \(E\) is called stable closed if all its finite field extensions are stable. The main aim is to characterize stable fields with Henselian valuations. The author showed previously that such a field \(K\) has a residue-class field which is also stable [I. D. Chipchakov, Inst. Math. Bulg. Acad. Sci. No. 1 (1997)]. Here he continues the study of such fields and gives firstly a description of the rank of the Abelian \(p\)-group \(v(K)/p.v(K)\), where \(v(K)\) is the value group and \(p\) any prime, and secondly he describes the cyclic \(p\)-extensions of the residue class field. He also gives a number of sufficient conditions for the stability of Henselian valued fields. He ends by constructing concrete examples of such fields that are stable and also gives a criterion for such fields to be stable closed.
Reviewer: P.M.Cohn (London)

MSC:

16K20 Finite-dimensional division rings
12E15 Skew fields, division rings
12J10 Valued fields

Citations:

Zbl 0719.00002
Full Text: DOI

References:

[1] A. Albert, Structure of Algebras, Amer. Math. Soc. Colloq. Publ. Amer. Math. Soc. Providence, RI; A. Albert, Structure of Algebras, Amer. Math. Soc. Colloq. Publ. Amer. Math. Soc. Providence, RI · Zbl 0023.19901
[2] Aravire, R.; Jacob, B., \(p\), Proc. Sympos. Pure Math. (1995), Amer. Math. Soc: Amer. Math. Soc Providence, p. 27-49 · Zbl 0832.16015
[3] Artin, M., Two-dimensional orders of finite representation type, Manuscripta Math., 58, 445-471 (1987) · Zbl 0625.16005
[4] Cassels, J. W.S.; Frolich, A., Algebraic Number Theory (1967), Academic Press: Academic Press London/New York · Zbl 0153.07403
[5] Chipchakov, I. D., On the classification of central division algebras of linearly bounded degree over global fields and local fields, J. Algebra, 160, 342-379 (1993) · Zbl 0818.16019
[6] I. D. Chipchakov, On the Galois cohomological dimensions of stable fields with Henselian valuations; I. D. Chipchakov, On the Galois cohomological dimensions of stable fields with Henselian valuations · Zbl 0992.12004
[7] I. D. Chipchakov, Henselian valued quasi-local fields with totally indivisible value groups, Comm. Algebra; I. D. Chipchakov, Henselian valued quasi-local fields with totally indivisible value groups, Comm. Algebra · Zbl 0964.12004
[8] Chipchakov, I. D., On the residue fields of Henselian valued stable fields, Inst. Math. Bulg. Acad. Sci. (February 1997)
[9] Demushkin, S. P., On the maximal \(p\), Izv. Akad. Nauk SSSR Math. Ser., 25, 329-346 (1961) · Zbl 0100.03302
[10] Draxl, P., Ostrowski’s theorem for Henselian valued skew fields, J. Reine Angew. Math., 354, 213-218 (1984) · Zbl 0536.12018
[11] Endler, O., Valuation Theory (1972), Springer-Verlag: Springer-Verlag New York · Zbl 0257.12111
[12] Ershov, Yu. L., Co-Henselian extensions and Henselisation of division algebras, Algebra i Logika, 27, 649-658 (1988) · Zbl 0685.16014
[13] Fein, B.; Schacher, M., Minimality questions for simple algebras, Ring Theory. Ring Theory, Israel Math. Conf. Proc. (1989), Weizmann Sci. Press: Weizmann Sci. Press Jerusalem, p. 280-292 · Zbl 0688.16018
[14] Ford, T. J.; Saltman, D., Division algebras over Henselian surfaces, Israel Math. Conf. Proc. (1989), Weizmann Sci. Press: Weizmann Sci. Press Jerusalem, p. 320-336 · Zbl 0696.16012
[15] L. Fuchs, Infinite Abelian Groups, Academic Press, New York/London, 1970; L. Fuchs, Infinite Abelian Groups, Academic Press, New York/London, 1970 · Zbl 0209.05503
[16] Ireland, K.; Rosen, M., A Classical Introduction to Modern Number Theory (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0482.10001
[17] Jacob, B.; Wadsworth, A., Division algebras over Henselian fields, J. Algebra, 128, 126-179 (1990) · Zbl 0692.16011
[18] Koch, H., Galoische Theorie der \(p (1970)\), Springer-Verlag: Springer-Verlag New York · Zbl 0216.04704
[19] Labut, J. P., Demushkin groups of rank \(N_0\), Bull. Soc. Math. France, 94, 211-244 (1966) · Zbl 0154.02001
[20] Labut, J. P., Classification of Demushkin groups, Canad. J. Math., 19, 106-132 (1967) · Zbl 0153.04202
[21] Lang, S., Algebra (1965), Addison-Wesley: Addison-Wesley Reading · Zbl 0193.34701
[22] Lang, S., On quasi-algebraic closure, Ann. Math., 55, 373-390 (1952) · Zbl 0046.26202
[23] Merkurjev, A. S., Brauer groups of fields, Comm. Algebra, 11, 2611-2624 (1983) · Zbl 0555.13001
[24] Merkurjev, A. S.; Suslin, A. A., \(K\), Izv. Akad. Nauk SSSR, 46, 1011-1046 (1982)
[25] Minac, J.; Ware, R., Demushkin groups of rank \(N_0\), Manuscripta Math., 73, 411-421 (1991) · Zbl 0748.12003
[26] Pierce, R., Associative Algebras (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0497.16001
[27] Platonov, V. P.; Yanchevskij, V. I., Dieudonne’s conjecture on the structure of unitary groups over a division ring, and Hermitian \(K\), Izv. Akad. Nauk SSSR Ser. Mat., 48, 1266-1294 (1984) · Zbl 0579.16011
[28] Pontrjagin, L. S., Continuous Groups (1984), Nauka: Nauka Moscow
[29] Ribenboim, P., Equivalent forms of Hensel’s lemma, Exposition. Math., 3, 3-24 (1985) · Zbl 0558.12014
[30] Serre, J.-P., Cohomologie Galoisienne. Cohomologie Galoisienne, Lecture Notes in Math., 5 (1965), Springer-Verlag: Springer-Verlag Berlin
[31] Suslin, A. A., Algebraic \(K\), Contemp. Problems Math. Recent Adv., 25, 115-208 (1984) · Zbl 0586.13012
[32] Tomchin, I. L.; Yanchevskii, V. I., On defects of valued division algebras, Algebra i Analiz, 3, 147-164 (1991) · Zbl 0846.11062
[33] Wadsworth, A. R., Extending valuations to finite dimensional division algebras, Proc. Amer. Math. Soc., 98, 20-22 (1986) · Zbl 0601.12028
[34] Weil, A., Basic Number Theory (1967), Springer-Verlag: Springer-Verlag Berlin · Zbl 0176.33601
[35] Witt, E., Schiefkorper uber diskret bewerteten Korpern, J. Reine Angew. Math., 176, 153-156 (1936) · JFM 62.1112.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.