×

Finite approximations of Frobenius-Perron operators. A solution of Ulam’s conjecture to multi-dimensional transformations. (English) Zbl 0890.58035

Summary: We prove that Ulam’s piecewise constant approximation algorithm is convergent for computing an absolutely continuous invariant measure associated with a piecewise \(C^2\) expanding transformation or a Jablonski transformation \(S : [0,1]^N \subset \mathbb{R}^N\rightarrow[0,1]^N\). This solves an extension of Ulam’s conjecture to multi-dimensions and generalizes the convergence result given by T.-Y. Li for one-dimensional transformations.

MSC:

37A99 Ergodic theory
28D05 Measure-preserving transformations
37E99 Low-dimensional dynamical systems
Full Text: DOI

References:

[1] Boyarsky, A.; Gora, P.; Lou, Y. S., Constructive approximations to the invariant densities of higher-dimensional transformations, Constructive Approx., 10, 1-13 (1994) · Zbl 0796.28012
[2] Boyarsky, A.; Lou, Y. S., Approximating measures invariant under higher-dimensional chaotic transformations, J. Approx. Theory, 65, 231-244 (1991) · Zbl 0737.41022
[3] Boyarsky, A.; Lou, Y. S., A compactness theorem for approximating the invariant densities of higher dimensional transformations, J. Math. Anal. Appl., 173, 1, 173-190 (1993) · Zbl 0777.28009
[4] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland New York · Zbl 0445.73043
[5] Cockburn, B.; Coquel, F.; LeFloch, P., An error estimate for finite volume methods for scalar conservation laws, (AHPCRC Preprint 91-16 (1991), University of Minnesota) · Zbl 0845.65051
[6] Cornfeld, I. P.; Fomin, S. V.; Sinai, Ya. G., Ergodic Theory (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0493.28007
[7] Ding, J.; Zhou, A., Piecewise linear Markov approximations of Frobenius-Perron operators associated with multi-dimensional transformations, Nonlinear Anal., 25, 4, 399-408 (1995), TMA · Zbl 0907.47025
[8] Ding, J.; Zhou, A., The projection method for computing multi-dimensional absolutely continuous invariant measures, J. Stat. Phys., 77, 3/4, 899-908 (1994) · Zbl 0972.28501
[9] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0691.35001
[10] Girault, V.; Raviart, P. A., Finite Element Method for Navier-Stokes Equations — Theory and Algorithms (1986), Springer-Verlag · Zbl 0396.65070
[11] Giusti, E., Minimal Surfaces and Functions of Bounded Variation (1984), Birkhäuser · Zbl 0545.49018
[12] Góra, P.; Boyarsky, A., Absolutely continuous invariant measures for piecewise expanding \(C^2\) transformations in \(R^N\), Israel J. Math., 67, 3, 272-286 (1989) · Zbl 0691.28004
[13] Góra, P.; Boyarsky, A., Higher dimensional point transformations and asymptotic measures for cellular automata, Comput. Math. Appl., 19, 13-31 (1990) · Zbl 0728.68089
[14] Hunt, F. Y., A Monte Carlo approach to the approximation of invariant measures, Random & Comput. Dynamics, 2, 1, 111-133 (1994) · Zbl 0804.58033
[15] Jablonski, M., On invariant measures for piecewise \(C^2\)-transformations of the \(n\)-dimensional cube, Ann. Polon. Math. XLIII, 185-195 (1983) · Zbl 0591.28014
[16] Keller, G., Probabilités-ergodicité et mesures invariantes pour les transformations dilatantes par morceaux d’une région bornée du plan, C.R. Acad. Sci. Paris Sér. I Math., 289, 625-627 (1979) · Zbl 0419.28007
[17] Keller, G., Stochastic perturbation of some strange attractors, (Dynamical Systems and Chaos. Dynamical Systems and Chaos, Lecture Notes in Phys., 179 (1983)), 192-193
[18] Lasota, A.; Mackey, M., Chaos, Fractals, and Noise (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0784.58005
[19] Lasota, A.; Yorke, J. A., On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186, 481-488 (1973) · Zbl 0298.28015
[20] Li, T. Y., Finite approximation for the Frobenius-Perron operator, a solution to Ulam’s conjecture, J. Approx. Theory, 17, 177-186 (1976) · Zbl 0357.41011
[21] Ulam, S. M., A Collection of Mathematical Problems (1960), Interscience: Interscience New York · Zbl 0086.24101
[22] Walters, P., An Introduction to Ergodic Theory (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0475.28009
[23] Ziemer, W. P., Weakly Differentiable Functions (1989), Springer-Verlag: Springer-Verlag New York · Zbl 0177.08006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.