×

The Wiener test and potential estimates for quasilinear elliptic equations. (English) Zbl 0820.35063

In this important paper the authors nail down the last part of the boundary regularity for the Dirichlet problem of quasilinear elliptic equations. The problem has a long history starting with the fundamental work by N. Wiener in 1924. He solved completely the boundary regularity problem in the case of harmonic functions. The so-called Wiener integral criterion (the Wiener test) came out of these studies. V. Maz’ya [Vestn. Leningr. Univ. Math. 3, 225-242 (1976); transl. from Vestn. Leningr. Univ. 25, No. 13, 42-55 (1970; Zbl 0252.35024)] showed that a corresponding \(p\)-Wiener test gives a sufficient condition for the solvability of the Dirichlet problem associated with the quasilinear elliptic equation \(\text{div} A(t, \nabla u(x)) = 0\) where \(A(x,\xi) \approx | \xi |^ p\) for some \(p\), \(1 < p \leq n\), and \(n\) is the dimension of the underlying Euclidean space. In [P. Lindqvist and O. Martio, Acta Math. 155, 153-171 (1985; Zbl 0607.35042)] it was shown that the \(p\)-Wiener test gives a necessary condition for \(n - 1 < p \leq n\) and this paper provides this result for the full range of \(p\), \(1 < p \leq n\). A new and efficient tool in this connection is the Wolff potential [L. I. Hedberg and Th. Wolff, Ann. Inst. Fourier 33, 161-187 (1983; Zbl 0525.31005)]. As a byproduct the authors generalize many known results of thinness for ordinary superharmonic functions to the nonlinear situation.

MSC:

35J65 Nonlinear boundary value problems for linear elliptic equations
31C05 Harmonic, subharmonic, superharmonic functions on other spaces
Full Text: DOI

References:

[1] Adams, D. R.,L p potential theory techniques and nonlinear PDE, inPotential Theory (M. Kishi, ed.), pp. 1–15. Walter de Gruyter & Co., Berlin, 1992.
[2] Adams, D. R. & Hedberg, L. I.,Function Spaces and Potential Theory. In preparation. · Zbl 0834.46021
[3] Adams, D. R. &Meyers, N. G., Thinness and Wiener criteria for non-linear potentials.Indiana Univ. Math. J., 22 (1972), 169–197. · Zbl 0244.31012 · doi:10.1512/iumj.1972.22.22015
[4] Dal Maso, G., Mosco, U &Vivaldi, M. A., A pointwise regularity theory for the two-obstacle problem.Acta Math., 163 (1989), 57–107. · Zbl 0696.49016 · doi:10.1007/BF02392733
[5] Gariepy, R. &Ziemer, W. P., A regularity condition at the boundary for solutions of quasilinear elliptic equations.Arch. Rational Mech. Anal., 67 (1977), 25–39. · Zbl 0389.35023 · doi:10.1007/BF00280825
[6] Hedberg, L. I. &Wolff, Th. H., Thin sets in nonlinear potential theory.Ann. Inst. Fourier, 33 (1983), 161–187. · Zbl 0508.31008
[7] Heinonen, J. &Kilpeläinen, T.,A-superharmonic functions and supersolution of degenerate elliptic equations.Ark. Mat., 26 (1988), 87–105. · Zbl 0652.31006 · doi:10.1007/BF02386110
[8] – On the Wiener criterion and quasilinear obstacle problems.Trans. Amer. Math. Soc., 310 (1988), 239–255. · Zbl 0711.35052 · doi:10.1090/S0002-9947-1988-0965751-8
[9] Heinonen, J., Kilpeläinen, T. &Martio, O., Fine topology and quasilinear elliptic equations.Ann. Inst. Fourier, 39 (1989) 293–318. · Zbl 0659.35038
[10] –,Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford, 1993. · Zbl 0780.31001
[11] Kilpeläinen, T., Potential theory for supersolutions of degenerate elliptic equations.Indiana Univ. Math. J., 38 (1989), 253–275. · Zbl 0688.31005 · doi:10.1512/iumj.1989.38.38013
[12] Kilpeläinen, T. Nonlinear potential theory and PDEs. To appear inPotential Analysis. · Zbl 0925.35059
[13] Kilpeläinen, T. &Malý, J., Generalized Dirichlet problem in nonlinear potential theory.Manuscripta Math., 66 (1989), 25–44. · Zbl 0698.31008 · doi:10.1007/BF02568480
[14] – Degenerate elliptic equations with measure data and nonlinear potentials.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 19 (1992), 591–613. · Zbl 0797.35052
[15] Kilpeläinen, T. &Ziemer, W. P., Pointwise regularity of solutions to nonlinear double obstacle problems.Ark. Mat., 29 (1991), 83–106. · Zbl 0733.35025 · doi:10.1007/BF02384333
[16] Lindqvist, P. &Martio, O., Two theorems of N. Wiener for solutions of quasilinear elliptic equations.Acta Math., 155 (1985), 153–171. · Zbl 0607.35042 · doi:10.1007/BF02392541
[17] Littman, W., Stampacchia, G. &Weinberger, H. F., Regular points for elliptic equations with discontinuous coefficients.Ann. Scuola Norm. Sup. Pisa. Sci. Fis. Mat. (3), 17 (1963), 43–77. · Zbl 0116.30302
[18] Maz’ya, V. G., On the continuity at a boundary point of solutions of quasi-linear elliptic equations.Vestnik Leningrad Univ. Math., 3 (1976), 225–242; English translation ofVestnik Leningrad. Univ. Mat. Kekh Astronom., 25 (1970), 42–55 (Russian).
[19] Michael, J. H. &Ziemer, W. P., Interior regularity for solutions to obstacle problems.Nonlinear Anal., 10 (1986), 1427–1448. · Zbl 0603.49006 · doi:10.1016/0362-546X(86)90113-6
[20] Rakotoson, J. M. &Ziemer, W. P., Local behavior of solutions of quasilinear elliptic equations with general structure.Trans. Amer. Math. Soc., 319 (1990), 747–764. · Zbl 0708.35023 · doi:10.2307/2001263
[21] Serrin, J., Local behavior of solutions of quasi-linear equations.Acta Math., 111 (1964), 247–302. · Zbl 0128.09101 · doi:10.1007/BF02391014
[22] Trudinger, N. S., On Harnack type inequalities and their application to quasilinear elliptic equations.Comm. Pure Appl. Math., 20 (1967), 721–747. · Zbl 0153.42703 · doi:10.1002/cpa.3160200406
[23] Wiener, N., Certain notions in potential theory.J. Math. Phys., 3 (1924), 24–51; Reprinted inNorbert Wiener: Collected works, Vol. 1, pp. 364–391. MIT Press, 1976. · JFM 50.0646.03
[24] Ziemer, W. P.,Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation. Springer-Verlag, New York, 1989. · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.