×

Strongly nonlinear modal equations for nearly integrable PDEs. (English) Zbl 0797.35144

Summary: The purpose of this paper is the derivation of reduced, finite- dimensional dynamical systems that govern the near-integrable modulations of \(N\)-phase, spatially periodic, integrable wavetrains. The small parameter in this perturbation theory is the size of the nonintegrable perturbation in the equation, rather than the amplitude of the solution, which is arbitrary. Therefore, these reduced equations locally approximate strongly nonlinear behavior of the nearly integrable PDE. The derivation we present relies heavily on the integrability of the underlying PDE and applies, in general, to any \(N\)-phase periodic wavetrain. For specific applications, however, a numerical pretest is applied to fix the truncation order \(N\). We present one example of the reduction philosophy with the damped, driven sine-Gordon system and summarize our present progress toward application of the modulation equations to this numerical study.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
37A30 Ergodic theorems, spectral theory, Markov operators
Full Text: DOI

References:

[1] E. A. Overman, D. W. McLaughlin, A. R. Bishop, Coherence and Chaos in the Driven, Damped Sine-Gordon Equation: Measurement of the Soliton Spectrum,Physica 19D, 1–41 (1986). · Zbl 0615.35071
[2] A. R. Bishop, M. G. Forest, D. W. McLaughlin, E. A. Overman, A. Quasiperiodic Route to Chaos in a Near-Integrable PDE,Physica 23D, 293–328 (1986); A Quasiperiodic Route to Chaos in a Near-Integrable PDE: Homoclinic Crossings,Phys. Lett. A 127 (6,7), 335–340 (1988); A. R. Bishop, R. Flesch, M. G. Forest, D. W. McLaughlin, E. A. Overman, Correlations Between Chaos in a Perturbed Sine-Gordon Equation and A Truncated Model System,SIAM J. Math. Anal. 21 (6), 1–25 (1990); D. W. McLaughlin and E. A. Overman, Whiskered Tori for Integrable Pde’s: Chaotic Behavior in Near Integrable Pde’s,Surv. in Appl. Math. 1, 1, (1992). · Zbl 0616.65135
[3] M. G. Forest, S. P. Sheu, A. Sinha, Frequency and Phase Locking of Spatially Periodic, Perturbed Sine-Gordon Breather Trains,SIAM J. Appl. Math.,52, 746–761 (1992). · Zbl 0753.34042 · doi:10.1137/0152043
[4] M. G. Forest, A. Sinha, A Numerical Study of Nearly Integrable Modulation Equations,Singular Limits of Dispersive Wave Equations, Eds. N. M. Ercolani, C. D. Levermore, D. Serre, Plenum Press, New York, to appear. · Zbl 0849.35118
[5] P. Deift, R. Oba, S. Venakides, The Toda Shock Problem, to appear,Comm. Pure Appl. Math.; A. Bloch, Y. Kodama, Dispersive Regularization of the Whitham Equation for the Toda Lattice,SIAM J. Appl. Math. 52, 909 (1992). · Zbl 0749.35054
[6] P. Constantin, C. Foias, Global Lyapunov Exponents, Kaplan-Yorke Formulas and the Dimension of Attractors for 2D Navier-Stokes Equations,Comm. Pure Appl. Math. 38, 1–27 (1985); P. Constantin, C. Foias, R. Temam,AMS Memoirs 53 (314), 1–66 1985; C. Doering, J. D. Gibbon, D. D. Holm, B. Nicolaenko, Low Dimensionality in the Complex Ginzburg-Landau Equation,Nonlinearity 1, 279 (1988);Phys. Rev. Lett. 59, 2911 (1987). · Zbl 0582.35092 · doi:10.1002/cpa.3160380102
[7] E. Trubowitz, J. Garnett,Comm. Math. Helv., 1984; V. Marcenko, I. Ostrovskii,Sov. Math. Dokl. 16, 761–765, 1975.
[8] N. M. Ercolani, Private Notes, 1988.
[9] M. G. Forest, D. W. McLaughlin, Spectral Theory for the Periodic Sine-Gordon Equation: A Concrete Viewpoint,J. Math. Phys. 23 (7), 1248–1277 (1982). · Zbl 0498.35072 · doi:10.1063/1.525509
[10] N. M. Ercolani, M. G. Forest, The Geometry of Real Sine-Gordon Wavetrains,Comm. Math. Phys. 99, 1–49 (1985). · Zbl 0591.35065 · doi:10.1007/BF01466592
[11] G. B. Whitham,Linear and Nonlinear Waves, Wiley, New York, 1974. · Zbl 0373.76001
[12] M. G. Forest, D. W. McLaughlin, Modulations of Perturbed KdV Wavetrains,SIAM J. Appl. Math. 44 (2), 287–300 (1984). · Zbl 0552.35070 · doi:10.1137/0144021
[13] H. Flaschka, M. G. Forest, D. W. McLaughlin, Multiphase Averaging and the Inverse Spectral Solution of the KdV Equation,Comm. Pure Appl. Math. 33, 739–784 (1980). · Zbl 0454.35080 · doi:10.1002/cpa.3160330605
[14] M. Kruskal, R. Miura, Application of a Nonlinear WKB Method to the KdV Equation,SIAM J. Appl. Math. 26, 376–395 (1974). · Zbl 0273.35055 · doi:10.1137/0126036
[15] M. G. Forest, D. W. McLaughlin, Modulations of Sinh-Gordon and Sine-Gordon Wavetrains,Studies in Applied Mathematics 68, 11–59 (1983). · Zbl 0541.35071
[16] N. M. Ercolani, M. G. Forest, D. W. McLaughlin, Modulational Stability of Two-Phase Sine-Gordon Wavetrains,Stud. Appl. Math. 71 (2), 91–101 (1984). · Zbl 0557.35120
[17] M. G. Forest, J.-E. Lee, Geometry and Modulation Theory for the Periodic Nonlinear Schrödinger Equation,IMA Volumes in Math. and Its Applications, Vol. 2, 1986, Ed. D. Kinderlehrer et al. · Zbl 0615.35003
[18] N. M. Ercolani, M. G. Forest, D. W. McLaughlin, R. Montgomery, Hamiltonian Structure for the Modulation Equations of a Sine-Gordon Wavetrain,Duke Math. J. 55 (4), 949–983 (1987). · Zbl 0668.35064 · doi:10.1215/S0012-7094-87-05548-7
[19] P. Griffiths, J. Harris,Principles of Algebraic Geometry, Wiley, New York, 1978. · Zbl 0408.14001
[20] N. M. Ercolani, M. G. Forest, D. W. McLaughlin, Geometry of the Modulational Instability, Part I: Local Analysis, to appear,AMS Memoirs; Geometry of the Modulational Instability, Part II: Global Results, to appear,AMS Memoris; Homoclinic Orbits for the Periodic Sine-Gordon Equation,Physica D 43, 349–384 (1990). · Zbl 0705.58026
[21] R. Flesch, M. G. Forest, A. Sinha, Numerical IST for the Periodic Sine-Gordon Equation,Physica D. 48, 169–231 (1991). · Zbl 0728.65098 · doi:10.1016/0167-2789(91)90058-H
[22] Bikbaev, R. F., Kuksin, S. B., Periodic Boundary Problem for the Sine-Gordon Equation, its Small Hamiltonian Perturbations, and KAM-Deformations to the Finite-Gap Toni,Algebra Anal. 4 (3), 42–78 (1992). · Zbl 0771.35052
[23] S.-P. Sheu, Ph. D. Dissertation, Ohio State University, 1992.
[24] G. Terrones, D. W. McLaughlin, E. A. Overman, A. J. Pearlstein, Stability and Bifurcation of Spatially Coherent Solutions of the Damped Driven NLS Equation,SIAM J. of Appl. Math. 50, 791 (1990). · Zbl 0702.58067 · doi:10.1137/0150046
[25] J. Guckenheimer, P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences Series, Vo. 42, Springer-Verlag, New York, 1983. · Zbl 0515.34001
[26] M. Bartuccelli, P. L. Christensen, V. Muto, M. P. Sorensen, N. F. Pederson, Chaotic Behavior of a Pendulum with Variable Length,Nuovo Cimento 100B, 229 (1988).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.