×

On the exactly-solvable semi-infinite quantum well of the non-rectangular step-harmonic profile. (English) Zbl 07899047

Summary: An exactly-solvable model of the non-relativistic harmonic oscillator with a position-dependent effective mass is constructed. The model behaves itself as a semi-infinite quantum well of the non-rectangular profile. Such a form of the profile looks like a step-harmonic potential as a consequence of the certain analytical dependence of the effective mass from the position and semiconfinement parameter \(a\). Both states of the discrete and continuous spectrum are studied. In the case of the discrete spectrum, wavefunctions of the oscillator model are expressed through the Bessel polynomials. The discrete energy spectrum is non-equidistant and finite as a consequence of its dependence on parameter \(a\), too. In the case of the continuous spectrum, wavefunctions of the oscillator model are expressed through the \({}_1F_1\) hypergeometric functions. At the limit, when the parameter \(a\) goes to infinity, both wavefunctions, and the energy spectrum of the model under construction correctly reduce to corresponding results of the usual non-relativistic harmonic oscillator with a constant effective mass. Namely, wavefunctions of the discrete spectrum recover wavefunctions in terms of the Hermite polynomials, and wavefunctions of the continuous spectrum simply vanish. We also present a new limit relation that reduces Bessel polynomials directly to Hermite polynomials and prove its correctness using the mathematical induction technique.

MSC:

81-XX Quantum theory

References:

[1] Miller, RC; Gossard, AC; Kleinman, DA; Munteanu, O., Parabolic quantum wells with the \(GaAs-Al_xGa_{1-x}As\) system, Phys. Rev. B, 29, 3740-3743 (1984) · doi:10.1103/PhysRevB.29.3740
[2] Miller, RC; Kleinman, DA; Gossard, AC, Energy-gap discontinuities and effective masses for \(GaAs-Al_xGa_{1-x}As\) quantum wells, Phys. Rev. B, 29, 7085-7087 (1984) · doi:10.1103/PhysRevB.29.7085
[3] Miller, RC; Gossard, AC; Kleinman, DA, Band offsets from two special \(GaAs-Al_xGa_{1-x}As\) quantum well structures, Phys. Rev. B, 32, 5443-5446 (1985) · doi:10.1103/PhysRevB.32.5443
[4] Gossard, AC; Miller, RC; Wiegmann, W., MBE growth and energy levels of quantum wells with special shapes, Surf. Sci., 174, 131-135 (1986) · doi:10.1016/0039-6028(86)90397-3
[5] Rizzi, L.; Piattella, OF; Cacciatori, SL; Gorini, V., The step-harmonic potential, Am. J. Phys., 78, 842-850 (2010) · doi:10.1119/1.3379290
[6] Amthong, A., WKB approximation for abruptly varying potential wells, Eur. J. Phys., 35, 065009 (2014) · Zbl 1309.81060 · doi:10.1088/0143-0807/35/6/065009
[7] Morris, JR, New scenarios for classical and quantum mechanical systems with position-dependent mass, Quantum Stud.: Math. Found., 2, 359-370 (2015) · Zbl 1326.81069 · doi:10.1007/s40509-015-0037-7
[8] Morris, JR, Short note: Hamiltonian for a particle with position-dependent mass, Quantum Stud.: Math. Found., 4, 295-299 (2017) · Zbl 1387.81211 · doi:10.1007/s40509-017-0102-5
[9] Koekoek, R.; Lesky, PA; Swarttouw, RF, Hypergeometric Orthogonal Polynomials and Their \(q\)-Analogues (2010), Berlin: Springer, Berlin · Zbl 1200.33012 · doi:10.1007/978-3-642-05014-5
[10] Dirac, PAM, The quantum theory of the emission and absorption of radiation, Proc. R. Soc. A, 114, 243-265 (1927) · JFM 53.0847.01
[11] Infeld, L.; Hull, TE, The factorization method, Rev. Mod. Phys., 23, 21-68 (1951) · Zbl 0043.38602 · doi:10.1103/RevModPhys.23.21
[12] Messiah, A., Quantum Mechanics (1966), North Holland: Wiley, North Holland · Zbl 0102.42602
[13] BenDaniel, DJ; Duke, CB, Space-charge effects on electron tunneling, Phys. Rev., 152, 683-692 (1966) · doi:10.1103/PhysRev.152.683
[14] Harrison, WA, Tunneling from an independent-particle point of view, Phys. Rev., 123, 85-89 (1961) · doi:10.1103/PhysRev.123.85
[15] Giaever, I., Energy gap in superconductors measured by electron tunneling, Phys. Rev. Lett., 5, 147-148 (1960) · doi:10.1103/PhysRevLett.5.147
[16] Giaever, I., Electron tunneling between two superconductors, Phys. Rev. Lett., 5, 464-466 (1960) · doi:10.1103/PhysRevLett.5.464
[17] Gora, T.; Williams, F., Theory of electronic states and transport in graded mixed semiconductors, Phys. Rev., 177, 1179-1182 (1969) · doi:10.1103/PhysRev.177.1179
[18] Zhu, Q-G; Kroemer, H., Interface connection rules for effective-mass wave functions at an abrupt heterojunction between two different semiconductors, Phys. Rev. B, 27, 3519-3527 (1983) · doi:10.1103/PhysRevB.27.3519
[19] von Roos, O., Position-dependent effective masses in semiconductor theory, Phys. Rev. B, 27, 7547-7551 (1983) · doi:10.1103/PhysRevB.27.7547
[20] Morrow, RA; Brownstein, KR, Model effective-mass Hamiltonians for abrupt heterojunctions and the associated wave-function-matching conditions, Phys. Rev. B, 30, 678-680 (1984) · doi:10.1103/PhysRevB.30.678
[21] Li, TL; Kuhn, KJ, Band-offset ratio dependence on the effective-mass Hamiltonian based on a modified profile of the \(GaAs - Al_xGa_{1-x}As\) quantum well, Phys. Rev. B, 47, 12760-12770 (1993) · doi:10.1103/PhysRevB.47.12760
[22] Li, J.; Ostoja-Starzewski, M., Fractal solids, product measures and fractional wave equations, Proc. R. Soc. A, 465, 2521-2536 (2009) · Zbl 1186.74011 · doi:10.1098/rspa.2009.0101
[23] Lima, JRF; Vieira, M.; Furtado, C.; Moraes, F.; Filgueiras, C., Yet another position-dependent mass quantum model, J. Math. Phys., 53, 072101 (2012) · Zbl 1315.82025 · doi:10.1063/1.4732509
[24] Nobre, FD; Rego-Monteiro, MA, Non-Hermitian PT Symmetric Hamiltonian with position-dependent masses: associated Schrödinger equation and finite-norm solutions, Braz. J. Phys., 45, 79-88 (2015) · doi:10.1007/s13538-014-0277-8
[25] Mustafa, O., Position-dependent mass momentum operator and minimal coupling: point canonical transformation and isospectrality, Eur. Phys. J. Plus, 134, 228 (2019) · doi:10.1140/epjp/i2019-12588-y
[26] El-Nabulsi, RA, On a new fractional uncertainty relation and its implications in quantum mechanics and molecular physics, Proc. R. Soc. A, 476, 20190729 (2020) · Zbl 1439.81065 · doi:10.1098/rspa.2019.0729
[27] Kolesnikov, AV; Silin, AP, Quantum mechanics with coordinate-dependent mass, Phys. Rev. B, 59, 7596-7599 (1999) · doi:10.1103/PhysRevB.59.7596
[28] Nikiforov, AF; Uvarov, VB, Special Functions of Mathematical Physics: A Unified Introduction with Applications (1988), Basel: Birkhäuser, Basel · Zbl 0624.33001 · doi:10.1007/978-1-4757-1595-8
[29] Landau, LD; Lifshitz, EM, Quantum Mechanics: Non-Relativistic Theory (1991), Oxford: Pergamon Press, Oxford · Zbl 0178.57901
[30] Jafarov, EI; Van der Jeugt, J., Exact solution of the semiconfined harmonic oscillator model with a position-dependent effective mass, Eur. Phys. J. Plus, 136, 758 (2021) · doi:10.1140/epjp/s13360-021-01742-z
[31] Jafarov, EI; Van der Jeugt, J., Exact solution of the semiconfined harmonic oscillator model with a position-dependent effective mass in an external homogeneous field, Pramana J. Phys., 96, 35 (2022) · doi:10.1007/s12043-021-02279-7
[32] Quesne, C., Generalized semiconfined harmonic oscillator model with a position-dependent effective mass, Eur. Phys. J. Plus, 137, 225 (2022) · doi:10.1140/epjp/s13360-022-02444-w
[33] Lesky, PA, Einordnung der Polynome von Romanovski-Bessel in das Askey-Tableau, Z. Angew. Math. Mech., 78, 646-648 (1998) · Zbl 0914.33002 · doi:10.1002/(SICI)1521-4001(199809)78:9<646::AID-ZAMM646>3.0.CO;2-W
[34] Routh, EJ, On some properties of certain solutions of a differential equation of the second order, Proc. Lond. Math. Soc., 16, 245-261 (1885) · JFM 17.0315.02
[35] Romanovski, VI, Sur quelques classes nouvelles de polynomes orthogonaux, C. R. Acad. Sci. Paris, 188, 1023-1025 (1929) · JFM 55.0915.03
[36] Jafarov, EI; Mammadova, AM; Van der Jeugt, J., On the direct limit from pseudo Jacobi polynomials to Hermite polynomials, Mathematics, 9, 88 (2021) · doi:10.3390/math9010088
[37] Nagiyev, SM, On two direct limits relating pseudo-Jacobi polynomials to Hermite polynomials and the pseudo-Jacobi oscillator in a homogeneous gravitational field, Theor. Math. Phys., 210, 121-134 (2022) · Zbl 1487.33010 · doi:10.1134/S0040577922010093
[38] Prudnikov, AP; Brychkov, YA; Marichev, OI, Integrals and Series: vol.3—More Special Functions (2002), London: Taylor and Francis, London · Zbl 0967.00503
[39] Dabrowska, JW; Khare, A.; Sukhatme, UP, Explicit wavefunctions for shape-invariant potentials by operator techniques, J. Phys. A: Math. Gen., 21, L195-L200 (1988) · doi:10.1088/0305-4470/21/4/002
[40] Cooper, F.; Khare, A.; Sukhatme, U., Supersymmetry and quantum mechanics, Phys. Rep., 251, 267-385 (1995) · Zbl 0988.81001 · doi:10.1016/0370-1573(94)00080-M
[41] Plastino, AR; Rigo, A.; Casas, M.; Garcias, F.; Plastino, A., Supersymmetric approach to quantum systems with position-dependent effective mass, Phys. Rev. A, 60, 4318-4325 (1999) · doi:10.1103/PhysRevA.60.4318
[42] Gönül, B.; Gönül, B.; Tutcu, D.; Özer, O., Supersymmetric approach to exactly solvable systems with position-dependent effective masses, Mod. Phys. Lett. A, 17, 2057-2066 (2002) · Zbl 1083.81525 · doi:10.1142/S0217732302008563
[43] Dong, S-H; Peña, JJ; Pachego-García, C.; García-Ravelo, J., Algebraic approach to the position-dependent mass Schrödinger equation for a singular oscillator, Mod. Phys. Lett. A, 22, 1039-1045 (2007) · Zbl 1119.81056 · doi:10.1142/S0217732307021470
[44] Amir, N.; Iqbal, S., Algebraic solutions of shape-invariant position-dependent effective mass systems, J. Math. Phys., 57, 062105 (2016) · Zbl 1342.82145 · doi:10.1063/1.4954283
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.