Skip to main content
Log in

On the exactly-solvable semi-infinite quantum well of the non-rectangular step-harmonic profile

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

An exactly-solvable model of the non-relativistic harmonic oscillator with a position-dependent effective mass is constructed. The model behaves itself as a semi-infinite quantum well of the non-rectangular profile. Such a form of the profile looks like a step-harmonic potential as a consequence of the certain analytical dependence of the effective mass from the position and semiconfinement parameter a. Both states of the discrete and continuous spectrum are studied. In the case of the discrete spectrum, wavefunctions of the oscillator model are expressed through the Bessel polynomials. The discrete energy spectrum is non-equidistant and finite as a consequence of its dependence on parameter a, too. In the case of the continuous spectrum, wavefunctions of the oscillator model are expressed through the \(_1F_1\) hypergeometric functions. At the limit, when the parameter a goes to infinity, both wavefunctions, and the energy spectrum of the model under construction correctly reduce to corresponding results of the usual non-relativistic harmonic oscillator with a constant effective mass. Namely, wavefunctions of the discrete spectrum recover wavefunctions in terms of the Hermite polynomials, and wavefunctions of the continuous spectrum simply vanish. We also present a new limit relation that reduces Bessel polynomials directly to Hermite polynomials and prove its correctness using the mathematical induction technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The paper has no associated data, however, any additional information regarding depicted figures generated from the computations done above is always available from the corresponding author upon reasonable request.

References

  1. Miller, R.C., Gossard, A.C., Kleinman, D.A., Munteanu, O.: Parabolic quantum wells with the \(GaAs-Al_xGa_{1-x}As\) system. Phys. Rev. B 29, 3740–3743 (1984)

    Article  Google Scholar 

  2. Miller, R.C., Kleinman, D.A., Gossard, A.C.: Energy-gap discontinuities and effective masses for \(GaAs-Al_xGa_{1-x}As\) quantum wells. Phys. Rev. B 29, 7085–7087 (1984)

    Article  Google Scholar 

  3. Miller, R.C., Gossard, A.C., Kleinman, D.A.: Band offsets from two special \(GaAs-Al_xGa_{1-x}As\) quantum well structures. Phys. Rev. B 32, 5443–5446 (1985)

    Article  Google Scholar 

  4. Gossard, A.C., Miller, R.C., Wiegmann, W.: MBE growth and energy levels of quantum wells with special shapes. Surf. Sci. 174, 131–135 (1986)

    Article  Google Scholar 

  5. Rizzi, L., Piattella, O.F., Cacciatori, S.L., Gorini, V.: The step-harmonic potential. Am. J. Phys. 78, 842–850 (2010)

    Article  Google Scholar 

  6. Amthong, A.: WKB approximation for abruptly varying potential wells. Eur. J. Phys. 35, 065009 (2014)

    Article  MATH  Google Scholar 

  7. Morris, J.R.: New scenarios for classical and quantum mechanical systems with position-dependent mass. Quantum Stud.: Math. Found. 2, 359–370 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Morris, J.R.: Short note: Hamiltonian for a particle with position-dependent mass. Quantum Stud.: Math. Found. 4, 295–299 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their \(q\)-Analogues. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  10. Dirac, P.A.M.: The quantum theory of the emission and absorption of radiation. Proc. R. Soc. A 114, 243–265 (1927)

    MATH  Google Scholar 

  11. Infeld, L., Hull, T.E.: The factorization method. Rev. Mod. Phys. 23, 21–68 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  12. Messiah, A.: Quantum Mechanics, vol. I. Wiley, North Holland (1966)

    MATH  Google Scholar 

  13. BenDaniel, D.J., Duke, C.B.: Space-charge effects on electron tunneling. Phys. Rev. 152, 683–692 (1966)

    Article  Google Scholar 

  14. Harrison, W.A.: Tunneling from an independent-particle point of view. Phys. Rev. 123, 85–89 (1961)

    Article  Google Scholar 

  15. Giaever, I.: Energy gap in superconductors measured by electron tunneling. Phys. Rev. Lett. 5, 147–148 (1960)

    Article  Google Scholar 

  16. Giaever, I.: Electron tunneling between two superconductors. Phys. Rev. Lett. 5, 464–466 (1960)

    Article  Google Scholar 

  17. Gora, T., Williams, F.: Theory of electronic states and transport in graded mixed semiconductors. Phys. Rev. 177, 1179–1182 (1969)

    Article  Google Scholar 

  18. Zhu, Q.-G., Kroemer, H.: Interface connection rules for effective-mass wave functions at an abrupt heterojunction between two different semiconductors. Phys. Rev. B 27, 3519–3527 (1983)

    Article  Google Scholar 

  19. von Roos, O.: Position-dependent effective masses in semiconductor theory. Phys. Rev. B 27, 7547–7551 (1983)

    Article  Google Scholar 

  20. Morrow, R.A., Brownstein, K.R.: Model effective-mass Hamiltonians for abrupt heterojunctions and the associated wave-function-matching conditions. Phys. Rev. B 30, 678–680 (1984)

    Article  Google Scholar 

  21. Li, T.L., Kuhn, K.J.: Band-offset ratio dependence on the effective-mass Hamiltonian based on a modified profile of the \(GaAs - Al_xGa_{1-x}As\) quantum well. Phys. Rev. B 47, 12760–12770 (1993)

    Article  Google Scholar 

  22. Li, J., Ostoja-Starzewski, M.: Fractal solids, product measures and fractional wave equations. Proc. R. Soc. A 465, 2521–2536 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lima, J.R.F., Vieira, M., Furtado, C., Moraes, F., Filgueiras, C.: Yet another position-dependent mass quantum model. J. Math. Phys. 53, 072101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nobre, F.D., Rego-Monteiro, M.A.: Non-Hermitian PT Symmetric Hamiltonian with position-dependent masses: associated Schrödinger equation and finite-norm solutions. Braz. J. Phys. 45, 79–88 (2015)

    Article  Google Scholar 

  25. Mustafa, O.: Position-dependent mass momentum operator and minimal coupling: point canonical transformation and isospectrality. Eur. Phys. J. Plus 134, 228 (2019)

    Article  Google Scholar 

  26. El-Nabulsi, R.A.: On a new fractional uncertainty relation and its implications in quantum mechanics and molecular physics. Proc. R. Soc. A 476, 20190729 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kolesnikov, A.V., Silin, A.P.: Quantum mechanics with coordinate-dependent mass. Phys. Rev. B 59, 7596–7599 (1999)

    Article  Google Scholar 

  28. Nikiforov, A.F., Uvarov, V.B.: Special Functions of Mathematical Physics: A Unified Introduction with Applications. Birkhäuser, Basel (1988)

    Book  MATH  Google Scholar 

  29. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-Relativistic Theory. Pergamon Press, Oxford (1991)

    MATH  Google Scholar 

  30. Jafarov, E.I., Van der Jeugt, J.: Exact solution of the semiconfined harmonic oscillator model with a position-dependent effective mass. Eur. Phys. J. Plus 136, 758 (2021)

    Article  Google Scholar 

  31. Jafarov, E.I., Van der Jeugt, J.: Exact solution of the semiconfined harmonic oscillator model with a position-dependent effective mass in an external homogeneous field. Pramana J. Phys. 96, 35 (2022)

    Article  Google Scholar 

  32. Quesne, C.: Generalized semiconfined harmonic oscillator model with a position-dependent effective mass. Eur. Phys. J. Plus 137, 225 (2022)

    Article  Google Scholar 

  33. Lesky, P.A.: Einordnung der Polynome von Romanovski-Bessel in das Askey-Tableau. Z. Angew. Math. Mech. 78, 646–648 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Routh, E.J.: On some properties of certain solutions of a differential equation of the second order. Proc. Lond. Math. Soc. 16, 245–261 (1885)

    MathSciNet  MATH  Google Scholar 

  35. Romanovski, V.I.: Sur quelques classes nouvelles de polynomes orthogonaux. C. R. Acad. Sci. Paris 188, 1023–1025 (1929)

    MATH  Google Scholar 

  36. Jafarov, E.I., Mammadova, A.M., Van der Jeugt, J.: On the direct limit from pseudo Jacobi polynomials to Hermite polynomials. Mathematics 9, 88 (2021)

    Article  Google Scholar 

  37. Nagiyev, S.M.: On two direct limits relating pseudo-Jacobi polynomials to Hermite polynomials and the pseudo-Jacobi oscillator in a homogeneous gravitational field. Theor. Math. Phys. 210, 121–134 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  38. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series: vol.3—More Special Functions. Taylor and Francis, London (2002)

    MATH  Google Scholar 

  39. Dabrowska, J.W., Khare, A., Sukhatme, U.P.: Explicit wavefunctions for shape-invariant potentials by operator techniques. J. Phys. A: Math. Gen. 21, L195–L200 (1988)

    Article  MathSciNet  Google Scholar 

  40. Cooper, F., Khare, A., Sukhatme, U.: Supersymmetry and quantum mechanics. Phys. Rep. 251, 267–385 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. Plastino, A.R., Rigo, A., Casas, M., Garcias, F., Plastino, A.: Supersymmetric approach to quantum systems with position-dependent effective mass. Phys. Rev. A 60, 4318–4325 (1999)

    Article  Google Scholar 

  42. Gönül, B., Gönül, B., Tutcu, D., Özer, O.: Supersymmetric approach to exactly solvable systems with position-dependent effective masses. Mod. Phys. Lett. A 17, 2057–2066 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Dong, S.-H., Peña, J.J., Pachego-García, C., García-Ravelo, J.: Algebraic approach to the position-dependent mass Schrödinger equation for a singular oscillator. Mod. Phys. Lett. A 22, 1039–1045 (2007)

    Article  MATH  Google Scholar 

  44. Amir, N., Iqbal, S.: Algebraic solutions of shape-invariant position-dependent effective mass systems. J. Math. Phys. 57, 062105 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewer for the valuable comments and suggestions, which substantially increased the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Jafarov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarov, E.I., Nagiyev, S.M. On the exactly-solvable semi-infinite quantum well of the non-rectangular step-harmonic profile. Quantum Stud.: Math. Found. 9, 387–404 (2022). https://doi.org/10.1007/s40509-022-00275-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-022-00275-z

Keywords

Navigation