×

Numerical solution of Burgers’ equation. (English) Zbl 0782.65147

Numerical solutions of the one-dimensional Burgers equation are obtained. The technique of finitely reproducing nonlinearities introduced by N. W. Bazley [Manuscripta math. 18, 353-369 (1976; Zbl 0331.65037)] is used. This technique, when applied to Burgers equation, gives a method where a system of nonlinear ordinary differential equations is to be solved. The present method produces very accurate results in comparison to finite difference or finite element methods.

MSC:

65Z05 Applications to the sciences
35Q53 KdV equations (Korteweg-de Vries equations)

Citations:

Zbl 0331.65037
Full Text: DOI

References:

[1] Cole, On a quaslinear parabolic equation occurring in aerodynamics, Quart. Appl. Math 9 pp 225– (1951) · Zbl 0043.09902
[2] Ames, Non-linear Partial Differential Equations in Engineering (1965) · Zbl 0176.39701
[3] Hopf, The partial differential equation ut + uux = {\(\mu\)}uxx, Commun. Pure Appl. Math. 3 pp 201– (1950) · Zbl 0039.10403 · doi:10.1002/cpa.3160030302
[4] Caldwell, A finite element approach to Burger’s equation, Appl. Math. Modelling 5 pp 189– (1981) · Zbl 0476.76054 · doi:10.1016/0307-904X(81)90043-3
[5] Caldwell, Solution of Burger’s equation with a large Reynold’s number, Appl. Math. Modelling 6 pp 381– (1982) · Zbl 0496.76029 · doi:10.1016/S0307-904X(82)80102-9
[6] Caldwell, Numerical Methods for Non-linear Problems 2 pp 700– (1984) · Zbl 0578.76060
[7] Nguyen, Numerical Methods for Non-linear Problems 2 pp 718– (1984)
[8] Evans, The group explicit method for the solution of Burger’s equation, Computing 32 pp 239– (1984) · Zbl 0523.65071 · doi:10.1007/BF02243575
[9] Lohar, Variable mesh cubic spline technique for N-wave solution of Burger’s equation, J. Comput. Phys. 39 pp 433– (1981) · Zbl 0471.76073 · doi:10.1016/0021-9991(81)90162-5
[10] Kakuda, The generalised boundary element approach to Burger’s equation, Int. j. numer. methods eng. 29 pp 245– (1990) · Zbl 0712.76070 · doi:10.1002/nme.1620290203
[11] Bazley, Approximation of operators with reproducing non-linearities, Manuscripta Math. 18 pp 353– (1976) · Zbl 0331.65037 · doi:10.1007/BF01270496
[12] Manuel Campos, Numerical solution of a diffusion equation with a reproducing nonlinearity, Z. Angew Math. Phys. 36 pp 286– (1985) · Zbl 0689.65073 · doi:10.1007/BF00945462
[13] Verwer, Convergence properties of the Runge-Kutta-Chebȳshev method, Numer. Math. 57 pp 157– (1990) · Zbl 0697.65072 · doi:10.1007/BF01386405
[14] van der Houwen, On the internal stability of explicit, m-stage Runge-Kutta methods for large m-values, Z. Angew. Math. Mech. 60 pp 479– (1980) · Zbl 0455.65052 · doi:10.1002/zamm.19800601005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.