×

A comparison of differential quadrature methods for the solution of partial differential equations. (English) Zbl 0781.65088

First of all the authors present a brief outline of the quadrature discretization method (QDM) as a generalization of standard spectral collocation methods. In fact they propose a discrete representation of the derivative operator for arbitrary subdivisions of the argument domain based on split range polynomial expansions. The state that split range QDM (SRQDM) may achieve the high accuracy and spectacular convergence rates of spectral methods and believe that these new schemes are capable of solving partial differential equations involving interior steep gradients and/or discontinuities.
Unfortunately their proof only consists of solving Burgers’ equation. At least for this equation SRQDM works well.

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
Full Text: DOI

References:

[1] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1988), Springer: Springer Berlin · Zbl 0658.76001
[2] Augenbaum, J. M., An adaptive pseudospectral method for discontinuous problems, Appl. Numer. Math., 5, 459-480 (1989) · Zbl 0684.65103
[3] Farcy, A.; de Roquefort, T. Alziary, Chebyshev pseudospectral solution of the incompressible Navier-Stokes equations in curvilinear domains, Comput. & Fluids, 16, 459-473 (1988) · Zbl 0669.76048
[4] Peyret, R., The Chebyshev multidomain approach to stiff problems in fluid mechanics, Comput. Methods Appl. Mech. Engrg., 80, 129-145 (1990) · Zbl 0722.76046
[5] Farcy, A.; de Roquefort, T. Alziary, Pseudospectral multi-domain method for incompressible viscous flow computation, Comput. Methods Appl. Mech. Engrg., 80, 337-346 (1990) · Zbl 0722.76051
[6] Basdevant, C.; Deville, M.; Haldenwang, P.; Lacroix, J. M.; Quazzani, J.; Peyret, R.; Orlandi, P.; Patera, A. T., Spectral and finite difference solutions of the Burgers equation, Comput. & Fluids, 14, 23-41 (1986) · Zbl 0612.76031
[7] Guillard, H.; Peyret, R., On the use of spectral methods for the numerical solution of stiff problems, Comput. Methods Appl. Mech. Engrg., 66, 17-43 (1988) · Zbl 0652.65084
[8] Bellman, R.; Kashef, B. G.; Casti, J., Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations, J. Comput. Phys., 10, 40-52 (1972) · Zbl 0247.65061
[9] Civan, F.; Sliepcevich, C. M., Application of differential quadrature to transport processes, J. Math. Anal. Appl., 93, 206-221 (1983) · Zbl 0538.65084
[10] Civan, F.; Sliepcevich, C. M., Differential quadrature for multidimensional problems, J. Math. Anal. Appl., 101, 423-443 (1984) · Zbl 0557.65084
[11] Light, J. C.; Hamilton, I. P.; Hill, J. V., Generalized discrete variable approximation in quantum mechanics, J. Chem. Phys., 82, 1400 (1985)
[12] Shizgal, B., A Gaussian quadrature procedure for use in the solution of the Boltzmann equation and related problems, J. Comput. Phys., 41, 309-327 (1981) · Zbl 0459.65096
[13] Shizgal, B.; Blackmore, R., A discrete ordinate method of solution of linear boundary value and eigenvalue problems, J. Comput. Phys., 55, 313-327 (1984) · Zbl 0542.65047
[14] Gelinas, R. J.; Doss, S. K.; Miller, K., The moving finite element method: Applications to general partial differential equations with multiple large gradients, J. Comput. Phys., 40, 202-249 (1981) · Zbl 0482.65061
[15] Hrymak, A. N.; McRae, G. J.; Westerberg, A. W., An implementation of a moving finite element method, J. Comput. Phys., 63, 168-190 (1986) · Zbl 0598.65085
[16] Mulder, W. A., Multigrid method for the one-dimensional inviscid Burgers equation, SIAM J. Sci. Statist. Comput., 11, 35-50 (1990) · Zbl 0683.76049
[17] Love, M. D., Subgrid modeling studies with Burgers’ equation, J. Fluid Mech., 100, 87-110 (1980) · Zbl 0441.76022
[18] Lax, P. D., Nonlinear partial differential equations and computing, SIAM Rev., 11, 7-19 (1969) · Zbl 0182.22102
[19] Roache, P. J., Computational Fluid Dynamics (1972), Hermosa: Hermosa Albuquerque · Zbl 0251.76002
[20] Ferziger, J. H., Numerical Methods for Engineering Application (1981), Wiley: Wiley New York · Zbl 0475.76038
[21] Robson, R. E.; Ness, K. F.; Sneddon, G. E.; Viehland, L. A., Comment on the discrete ordinate method in the kinetic theory of gases, J. Comput. Phys., 92, 213-229 (1991) · Zbl 0721.65099
[22] Calogero, F., Matrices, differential operators, and polynomials, J. Math. Phys., 22, 919-934 (1981) · Zbl 0473.33009
[23] Calogero, F., Lagrange interpolalion and differentiation, Lett. Nuovo Cimento, 35, 273-278 (1982)
[24] Fletcher, C. A.J., Burgers’ equation: A model for all reasons, (Noye, J., Numerical Solutions of Partial Differential Equations (1982), North-Holland: North-Holland Amsterdam) · Zbl 0525.65077
[25] Cole, J. D., On a quasi-linear parabolic equation occuring in aerodynamics, Quart. Appl. Math., 9, 225-236 (1951) · Zbl 0043.09902
[26] Hopf, E., The partial differential equation \(u_t + uu_x = μu_{ xx } \), Comm. Pure Appl. Math., 3, 201-230 (1950) · Zbl 0039.10403
[27] Rodin, E. Y., On some approximate and exact solutions of boundary value problems for Burgers’ equation, J. Math. Anal. Appl., 30, 401-414 (1970) · Zbl 0172.14201
[28] Rodin, E. Y., A Riccati solution for Burgers’ equation, Quart. Appl. Math., 27, 541-544 (1970) · Zbl 0172.14104
[29] Benton, E. R.; Platzman, G. N., A table of solutions of the one-dimensional Burgers equation, Quart. Appl. Math., 30, 195-212 (1972) · Zbl 0255.76059
[30] Ku, H. C.; Hirsh, R. S.; Taylor, T. D.; Rosenberg, A. P., A pseudospectral matrix element method for solution of three-dimensional incompressible flows and its parallel implementation, J. Comput. Phys., 83, 260-291 (1989) · Zbl 0672.76036
[31] Orszag, S. A., Spectral methods for problems in complex geometrics, J. Comput. Phys., 37, 70-92 (1980) · Zbl 0476.65078
[32] Gottlieb, D.; Lustman, L., The spectrum of the Chebyshev collocation operator for the heat equation, SIAM J. Numer. Anal., 20, 909-921 (1983) · Zbl 0537.65085
[33] Patera, A. T., A spectral element melhod for fluid dynamics: Laminar flow in a channel expansion, J. Comput. Phys., 54, 468-488 (1984) · Zbl 0535.76035
[34] Macaraeg, M. G.; Street, C. L., Improvements in spectral collocation discretization through a multiple domain technique, Appl. Numer. Math., 2, 95-108 (1986) · Zbl 0633.76094
[35] Pulicani, J. P., A spectral multi-domain method for the solution of 1-D-Helmholtz and Stokes-type equations, Comput. & Fluids, 16, 207-215 (1988) · Zbl 0639.76033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.