×

Cox point processes: why one realisation is not enough. (English) Zbl 07763648

Summary: We review a rich class of point process models, Cox point processes, and illustrate the necessity of more than one observation (point patterns) in performing parameter estimation. Furthermore, we introduce a new Cox point process model by treating the intensity function of the underlying Poisson point process as a random mixture of normal components. The behaviour and performance of the new model are compared with those of popular Cox point process models. The new model is exemplified with an application that involves a single point pattern corresponding to earthquake events in California, USA.
{© 2018 The Authors. International Statistical Review © 2018 International Statistical Institute}

MSC:

62-XX Statistics
Full Text: DOI

References:

[1] Baddeley, A.J., Rubak, E. & Turner, R. (2015). Spatial Point Patterns: Methodology and Applications with R.London: Chapman & Hall/CRC Interdisciplinary Statistics.
[2] Baddeley, A.J. & Turner, R. (2005). Spatstat: an R package for analyzing spatial point patterns. J. Stat. Softw., 12(6), 1-42.
[3] Eds. Barndorff‐Nielsen, O.E. (ed.), Kendall, W.S. (ed.) & vanLieshout, M.N.M. (ed.) (eds). (1999). Stochastic Geometry, Likelihood and ComputationBoca Raton, FL: Chapman & Hall/CRC.
[4] Besag, J.E. (1994). Discussion on the paper by Grenander and Miller. J. R. Stat. Soc. Ser. B, 56, 591-592.
[5] Brix, A. & Diggle, P.J. (2001). Spatiotemporal prediction for log‐Gaussian Cox processes. J. R. Stat. Soc. B, 63(4), 823-841. · Zbl 0996.62076
[6] Brown, P.E. (2015). Model‐based geostatistics the easy way. J. Stat. Softw., 63(12), 1-24. URL http://www.jstatsoft.org/v63/i12/.
[7] Cappé, O., Robert, C.P. & Rydén, T. (2003). Reversible jump, birth‐and‐death and more general continuous time Markov chain Monte Carlo samplers. J. R. Statist. Soc. B, 65, 679-700. · Zbl 1063.62133
[8] Celeux, G., Hurn, M. & Robert, C.P. (2000). Computational and inferential difficulties with mixture posterior distributions. J. Am. Stat. Assoc., 95(451), 957-970. · Zbl 0999.62020
[9] Chakraborty, A. & Gelfand, A.E. (2010). Measurement error in spatial point patterns. Bayesian Anal., 5, 97-122. · Zbl 1330.65028
[10] Chiu, S.N., Stoyan, D., Kendall, W.S. & Mecke, J. (2013). Stochastic Geometry and Its Applications, 3rd ed. Chichester: John Wiley & Sons Inc.. · Zbl 1291.60005
[11] Coles, P. & Jones, B. (1991). A lognormal model for the cosmological mass distribution. Mon. Nor. R. Astr. Soc., 248, 1-13.
[12] Cox, D.R. (1955). Some statistical methods related with series of events. J. R. Stat. Soc. B, 17, 129-157. · Zbl 0067.37403
[13] Cressie, N. (1993). Statistics for Spatial Data, Revised. New York: John Wiley & Sons, Inc.
[14] Cressie, N. & Wikle, C.K. (2011). Statistics for Spatio‐Temporal Data.Hoboken, NJ: Wiley. · Zbl 1273.62017
[15] Daley, D.J. & Vere‐Jones, D. (2005). An Introduction to the Theory of Point Processes Volume I: Elementary Theory and Methods, 2nd ed. New York: Springer. · Zbl 1026.60061
[16] Daley, D.J. & Vere‐Jones, D. (2008). An Introduction to the Theory of Point Processes Volume II: General Theory and Structure, 2nd. New York: Springer. · Zbl 0657.60069
[17] Dellaportas, P. & Papageorgiou, I. (2006). Multivariate mixtures of normals with unknown number of components. Stat. Comput., 16, 57-68.
[18] Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B, 39, 1-38. · Zbl 0364.62022
[19] Diebolt, J. & Robert, C.P. (1994). Estimation of finite mixture distributions by Bayesian sampling. J. R. Stat. Soc. B, 56, 363-375. · Zbl 0796.62028
[20] Diggle, P.J. (2013). Statistical Analysis of Spatial and Spatial‐Temporal Point Patterns, 3rd.: CRC Press.
[21] Gelfand, A.E. (ed.), Diggle, P.J. (ed.), Fuentes, M. (ed.) & Guttorp, P. (ed.) (eds). (2010). Handbook of Spatial Statistics.Boca Raton, FL: CRC. · Zbl 1188.62284
[22] Girolami, M. & Calderhead, B. (2011). Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. B, 73(2), 123-214. · Zbl 1411.62071
[23] Green, P.J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732. · Zbl 0861.62023
[24] Heinrich, L. (1992). Minimum contrast estimators for parameters of spatial ergodic point processes. In Transactions of the 11th Prague Conference on Random Processes, Information Theory and Statistical Decision Functions. pp. 479-492. Prague: Academic Publishing House. · Zbl 0770.62082
[25] Illian, J.B., Penttinen, A., Stoyan, H. & Stoyan, D. (2008). Statistical Analysis and Modelling of Spatial Point Patterns.Chichester: Wiley. · Zbl 1197.62135
[26] Illian, J.B., Sorbye, S.H. & Rue, H. (2012a). A toolbox for fitting complex spatial point process models using integrated nested Laplace approximation (INLA). Ann. Appl. Stat., 6(4), 1499-1530. · Zbl 1257.62093
[27] Illian, J.B., Sorbye, S.H., Rue, H. & Hendrichsen, D. (2012b). Using INLA to fit a complex point process model with temporally varying effects—a case study. J. Environ. Stat., 3(7).
[28] Jasra, A., Holmes, C.C. & Stephens, D.A. (2005). Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture. Stat. Sci., 20, 50-67. · Zbl 1100.62032
[29] Karr, A. (1991). Point Processes and Their Statistical Inference, 2nd ed. New York: CRC / Marcel Dekker, Inc. · Zbl 0733.62088
[30] Keribin, C., Brault, V., Celeux, G. & Govaert, G. (2015). Estimation and selection for the latent block model on categorical data. Stat. Comput., 25(6), 1201-1216. · Zbl 1331.62149
[31] Lantuéjoul, C. (2002). Geostatistical Simulation: Models and Algorithms.Berlin, Heidelberg: Springer‐Verlag. · Zbl 0990.86007
[32] Lawson, A.B. & Denison, D.G.T. (2002). Spatial Cluster Modelling: Chapman and Hall/CRC. · Zbl 1046.62102
[33] Lundberg, O. (1940). On Random Processes and Their Application to Sickness and Accident Statistics.Uppsala: Almqvist and Wiksells. · JFM 66.0678.01
[34] Marin, J.‐M., Mengersen, K. & Robert, C.P. (2005). Bayesian modeling and inference on mixtures of distributions. Handbook Statist., 25, 459-507.
[35] Matérn, B. (1986). Spatial Variation, Lecture Notes in Statistics, vol. 36. Berlin: Springer‐Verlag. · Zbl 0608.62122
[36] Micheas, A.C. (2014). Hierarchical Bayesian modeling of marked non‐homogeneous Poisson processes with finite mixtures and inclusion of covariate information. J. Appl. Stat., 41(12), 2596-2615. · Zbl 1514.62759
[37] Micheas, A. & Chen, J. (2018). sppmix: modeling spatial Poisson and related point processes using normal mixture models. Comput. Stat., Springer, 33(4), 1767-1798. · Zbl 1417.62009
[38] Micheas, A.C., Wikle, C.K. & Larsen, D.R. (2012). Random set modelling of three dimensional objects in a hierarchical Bayesian context. J. Stat. Comput. Simul., 84(1), 107-123. · Zbl 1453.62157
[39] Møller, J. (2003). Spatial Statistics and Computational Methods, Lecture Notes in Statistics.New York, Inc: Springer‐Verlag. · Zbl 1010.62507
[40] Møller, J., Syversveen, R.A. & Waagepetersen, R.P. (1998). Log Gaussian Cox processes. Scand. J. Stat., 25, 451-482. · Zbl 0931.60038
[41] Møller, J. & Waagepetersen, R.P. (2003). An introduction to simulation‐based inference for spatial point processes. In Spatial statistics and computational methods, pp. 43-198. New York, Inc: Springer‐Verlag. · Zbl 1039.62089
[42] Møller, J. & Waagepetersen, R.P. (2004). Statistical Inference and Simulation for Spatial Point Processes.Boca Raton, FL: Chapman & Hall/CRC. · Zbl 1044.62101
[43] Neal, R.M. (2011). MCMC Using Hamiltonian Dynamics. In Handbook of Markov chain Monte Carlo: Chapman & Hall/CRC, pp. 113-162. · Zbl 1229.65018
[44] Neyman, J. & Scott, E.L. (1958). Statistical approach to problems of cosmology. J. R. Stat. Soc. Ser. B (Stat Methodol.), 20, 1-43. · Zbl 0085.42906
[45] Rathbun, S.L. (1996). Estimation of Poisson intensity using partially observed concomitant variables. Biometrics, 52, 226-242. · Zbl 0876.62080
[46] Richardson, S. & Green, P.J. (1997). On Bayesian analysis of mixtures with an unknown number of components (with discussion). J Roy. Statist. Soc. Ser. B, 59, 731-792. · Zbl 0891.62020
[47] Ripley, B.D. (1987). Stochastic Simulation.New York: Wiley. · Zbl 0613.65006
[48] Robert, C.P. & Casella, G. (2004). Monte Carlo Statistical Methods, 2nd edition. New York: Springer. · Zbl 1096.62003
[49] Rue, H., Martino, S. & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B, 71(2), 319-392. · Zbl 1248.62156
[50] Simpson, D., Illian, J., Lindgren, F., Sorbye, S. & Rue, H. (2011). Going off grid: computationally efficient inference for log‐Gaussian Cox processes. Preprint Statistics No. 10/2011.
[51] Spodarev, E. (2013). Stochastic Geometry Spatial Statistics and Random Fields.Berlin Heidelberg: Springer‐Verlag.
[52] Stephens, M. (1997). Bayesian Methods for Mixtures of Normal Distributions, Univ. Oxford.
[53] Stephens, M. (2000). Bayesian analysis of mixture models with an unknown number of components: an alternative to reversible jump methods. Ann. Stat., 28, 40-74. · Zbl 1106.62316
[54] Taylor, B.M., Davies, T.M., Rowlingson, B.S. & Diggle, P.J. (2015). Bayesian inference and data augmentation schemes for spatial, spatiotemporal and multivariate log‐Gaussian Cox processes in R. J. Stat. Softw., 63(7), 1-48. URL http://www.jstatsoft.org/v63/i07/.
[55] Taylor, B.M. & Diggle, P.J. (2014). INLA Or MCMC? A tutorial and comparative evaluation for spatial prediction in log‐Gaussian Cox processes. J. Stat. Comput. Simul., 84(10), 2266-2284. · Zbl 1453.62214
[56] vanLieshout, M.N.M. (2000). Markov Point Processes and Their Applications.London: Imperial College Press. · Zbl 0968.60005
[57] Yao, W. (2012). Model based labeling for mixture models. Stat. Comput., 22, 337-347. https://doi.org/10.1007/s11222-010-9226-8 · Zbl 1322.62047 · doi:10.1007/s11222-010-9226-8
[58] Zhou, Z., Matteson, D.S., Woodard, D.B., Henderson, S.G. & Micheas, A.C. (2015). A spatio‐temporal point process model for ambulance demand. J. Am. Stat. Assoc., 110(509), 6-15.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.