×

Derivation of bivariate probability density functions with exponential marginals. (English) Zbl 0722.60020

Summary: A bivariate probability density function (pdf), \(f(x_ 1,x_ 2)\), admissible for two random variables \((X_ 1,X_ 2)\), is of the form \[ f(x_ 1,x_ 2)=f_ 1(x_ 1)f_ 2(x_ 2)[1+\rho \{F_ 1(x_ 1),F_ 2(x_ 2)\}], \] where \(\rho\) (u,v) \((u=F_ 1(x_ 1)\), \(v=F_ 2(x_ 2))\) is any function on the unit square that is 0-marginal and bounded below by -1 and \(F_ 1(x_ 1)\) and \(F_ 2(x_ 2)\) are cumulative distribution functions (cdf) of marginal probability density functions \(f_ 1(x_ 1)\) and \(f_ 2(x_ 2)\). The purpose of this study is to determine \(f(x_ 1,x_ 2)\) for different forms of \(\rho\) (u,v). By considering the rainfall intensity and the corresponding depths as dependent random variables, observed and computed probability distributions \(F_ 1(x_ 1)\), \(F(x_ 1| x_ 2)\), \(F_ 2(x_ 2)\) and \(F(x_ 2| x_ 1)\) are compared for various forms of \(\rho\) (u,v). Subsequently, the best form of \(\rho\) (u,v) is specified.

MSC:

60E99 Distribution theory
Full Text: DOI

References:

[1] Cohen, L.; Yaparovanny, Y.I. 1980: Positive quantum joint distributions. Journal of Mathematical Physics 21 (4), 794-796 · doi:10.1063/1.524501
[2] Cohen, L. 1984: Probability distributions with given multivariate marginals. Journal of Mathematical Physics 25 (8), 2402-2403 · Zbl 0566.60013 · doi:10.1063/1.526462
[3] Cohen, L.; Posch, T.E. 1985: Positive time-frequency distribution functions. IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-33 (1), 31-38 · doi:10.1109/TASSP.1985.1164512
[4] Finch, P.D.; Groblicki, R. 1984: Bivariate probability densities with given marginal. Foundations of Physics 14 (6), 549-552 · doi:10.1007/BF00736599
[5] Freund, J.E. 1961: A bivariate extension of the exponential distribution. Journal of the American Statistical Association 56, 971-977 · Zbl 0106.13304 · doi:10.2307/2282007
[6] Gumbel, E.J. 1960: Bivariate exponential distributions. Journal of the American Statistical Association 55 (292), 698-707 · Zbl 0099.14501 · doi:10.2307/2281591
[7] Gumbel, E.J.; Mustafi, C.K. 1967: Some analytical properties of bivariate extremal distributions. Journal of the American Statistical Association 62 (318), 569-588 · Zbl 0149.15802 · doi:10.2307/2283984
[8] Mardia, K.V., 1970: Families of bivariate distributions, pp. 90-91. Darien, CONN.: Hafner Publishing Company · Zbl 0223.62062
[9] Marshall, A.W.; Olkin, I. 1967: A multivariate exponential distribution. Journal of the American Statistical Association 62 (317), 30-44 · Zbl 0147.38106 · doi:10.2307/2282907
[10] Rosbjerg, D. 1987: On the annual maximum distribution in dependent partial duration series. Stochastic Hydrology and Hydraulics 1 (1), 3-16 · Zbl 0662.60119 · doi:10.1007/BF01543906
[11] Schweizer, B.; Sklar, A. 1986: Probability distributions with given margins: Note on a paper by Finch and Groblicki. Foundations of Physics 16 (10) 1061-1063 · doi:10.1007/BF01892941
[12] Singh, V.P.; Rajagopal, A.K.; Singh, K. 1986: Derivation of some frequency distributions using the principle of marginal entropy (POME). Advances in Water Resources 9 (2), 91-106 · doi:10.1016/0309-1708(86)90015-1
[13] Singh, V.P.; Rajagopal, A.K. 1987: Some recent advances in the application of the principle of maximum entropy (POME) in hydrology. Water for Future: Hydrology in Perspective (Proceedings of the Rome Symposium), IAHS Publ. No. 164, 353-364
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.