×

Linear birth and death models and associated Laguerre and Meixner polynomials. (English) Zbl 0656.60092

One of the methods for solving the Kolmogorov equations associated with a general birth and death stochastic process is the Karlin-McGregor method of reducing the problem into searching for appropriate orthogonal polynomials and the corresponding weight functions. This article deals with a case when the birth and death rates are linear. Two such linear models are discussed. The associated orthogonal polynomials and the generating function for transition probabilities are examined in detail.
Reviewer: A.M.Mathai

MSC:

60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI

References:

[1] Askey, R.; Ismail, M. E.H, Recurrence Relations, Continued Fractions and Orthogonal Polynomials, Memoirs Amer. Math. Soc., Vol. 300 (1984), Providence, RI · Zbl 0548.33001
[2] Askey, R.; Wimp, J., Associated Laguerre and Hermite polynomials, (Proc. Royal Soc. Edingburgh Sect. A, 96 (1984)), 15-37 · Zbl 0547.33006
[3] Bailey, N. T., The Elements of Stochastic Processes (1964), Wiley: Wiley New York · Zbl 0127.11203
[4] Bustoz, J.; Ismail, M. E.H, The associated ultraspherical polynomials and their \(q\)-analogues, Canad. J. Math., 34, 718-736 (1982) · Zbl 0451.33003
[5] Chihara, T. S., An Introduction to Orthogonal Polynomials (1978), Gordon & Breach: Gordon & Breach New York · Zbl 0389.33008
[6] Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., (Higher Transcendental Functions, Vol. 1 (1953), McGraw-Hill: McGraw-Hill New York) · Zbl 0052.29502
[7] Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., (Higher Transcendental Functions, Vol. 2 (1953), McGraw-Hill: McGraw-Hill New York) · Zbl 0052.29502
[8] Feller, W., (An Introduction to Probability Theory and Its Applications, Vol. 1 (1966), Wiley: Wiley New York) · Zbl 0138.10207
[9] Feller, W., (An Introduction to Probability Theory and Its Applications, Vol. 2 (1971), Wiley: Wiley New York) · Zbl 0138.10207
[10] Goovaerts, M. G.; D’hooge, L.; DePril, N., On the infinite divisibility of the ratio of two gama-distributed variables, Stochastic Process. Appl., 7, 291-297 (1978) · Zbl 0384.60015
[11] Ismail, M. E.H, The variation of zeros of certain orthogonal polynomials, Adv. in Appl. Math., 8, 111-118 (1987) · Zbl 0628.33001
[12] Ismail, M. E.H; Kelker, D. H., Special functions, Stieltjes transforms and infinite divisibility, SIAM J. Math. Anal., 10, 884-901 (1979) · Zbl 0427.60021
[13] Karlin, S.; McGregor, J., The differential equations of birth-and-death processes, and the Stieltjes moment problem, Trans. Amer. Math. Soc., 85, 489-546 (1957) · Zbl 0091.13801
[14] Karlin, S.; McGregor, J., Linear growth birth-and-death processes, J. Math. Mech., 7, 643-662 (1958), (now Indiana Univ. Math. J.) · Zbl 0091.13804
[15] Letessier, J.; Valent, G., The generating function method for quadratic asymptotically symmetric birth-and-death processes, SIAM J. Appl. Math., 44, 773-783 (1984) · Zbl 0562.60093
[16] Pollaczek, F., Sur une généralisation des polynomes de Jacobi, Mémorial des Science Mathematique, 131 (1956)
[17] Rainville, E. D., Special Functions (1960), Macmillan Co: Macmillan Co New York · Zbl 0050.07401
[18] Reuter, G. E.H, Denumerable Markov processes and the associated contraction semigroups on 1, Acta Math., 97, 1-46 (1957) · Zbl 0079.34703
[19] Roehner, B.; Valent, G., Solving the birth and death processes with quadratic asymptotically symmetric transition rates, SIAM J. Appl. Math., 42, 1020-1046 (1982) · Zbl 0495.60088
[20] Shohat, J. A.; Tamarkin, J. D., The Problem of Moments, (Mathematical Surveys, Vol. 1 (1950), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · Zbl 0112.06902
[21] Szegö, G., Orthogonal Polynomials, (Colloquium Publications, Vol. 23 (1975), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · JFM 65.0278.03
[22] Varga, R., Matrix Iterative Methods (1962), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0133.08602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.