×

Gauss sums for \({\mathbb F}_ q[T]\). (English) Zbl 0629.12014

‘Gauss and Jacobi sums’, taking values in function fields of one variable over a finite field, are defined using the Carlitz-Hayes-Drinfeld cyclotomic theory and the usual cyclotomic theory for \({\mathbb{F}}_ q[T]\). Analogues of Stickelberger’s theorem, the Hasse-Davenport theorem, Weil’s theorem on ‘Jacobi sums as Hecke characters’ and the Gross-Koblitz theorem are proved.

MSC:

11R58 Arithmetic theory of algebraic function fields
11R18 Cyclotomic extensions
11T23 Exponential sums
11T22 Cyclotomy

References:

[1] [Ca 1] Carlitz, L.: An analogue of the von Staudt-Clausen theorem. Duke Math. J.3, 503-517 (1937) · JFM 63.0879.03 · doi:10.1215/S0012-7094-37-00340-5
[2] [Ca 2] Carlitz, L.: A class of polynomials. Trans. Am. Math. Soc.43, 167-182 (1938) · JFM 64.0093.01 · doi:10.1090/S0002-9947-1938-1501937-X
[3] [Go] Goss, D.: Modular forms forF r [T]. J. Reine Angew. Math.317, 16-39 (1980) · Zbl 0422.10021 · doi:10.1515/crll.1980.317.16
[4] [G-K] Gross, B.H., Koblitz, N.: Gauss sums and thep-adic ?-function. Ann. Math.109, 569-581 (1979) · Zbl 0406.12010 · doi:10.2307/1971226
[5] [Ha] Hayes, D.: Explicit class field theory for rational function fields. Trans. Am. Math. Soc.189, 77-91 (1974) · Zbl 0292.12018 · doi:10.1090/S0002-9947-1974-0330106-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.