×

Further generalizations of Opial’s inequality. (English) Zbl 0612.26010

In the paper, two known Opial-type inequalities due to G.-S. Yang [Proc. Japan Acad. 42, 78-83 (1966; Zbl 0151.052)] and P. R. Beesack and K. M. Das [Pac. J. Math. 26, 215-232 (1968; Zbl 0162.079)] are generalized by replacing the involved power functions by some non-decreasing convex functions. The first theorem of the paper says essentially that:
If f is an absolutely continuous function on \([a,b]\) with \(f(a)=0\), and P is nondecreasing on [0,\(\infty)\), \(P(0)=0\), Q is decreasing and convex on [0,\(\infty)\) and \(Q(0)=0\), then \[ \int^{b}_{a}P(| f(x)|)Q(| f'(x)|)dx \]
\[ \leq (b-a)(P\circ (b-a)Q^{-1})_ 0^{(-1)}(\frac{1}{b-a}\int^{b}_{a}Q(| f'(x)|)dx) \]
\[ \leq \int^{b}_{a}(P\circ (b-a)Q^{-1})_ 0^{(-1)}\circ Q(| f'(x)|)dx, \] where \(Q^{-1}\) is the right-continuous inverse of Q and \[ (P\circ (b-a)Q^{-1})_ 0^{(-1)}(u):=\int^{u}_{0}P((b- a)Q^{-1}(t))dt. \] The above inequality reduces to the Yang’s inequality mentioned above when \(P(u)=u^ p,\quad Q(u)=u^ q,\quad p>0\) and \(q\geq 1.\) The second theorem states an extension of the known inequality obtained by Beesack and Das and which is too long to be cited here. Some Orlicz spaces with Billik norms and certain normalized complementary Young functions produced from P and Q are needed for the establishment of the second result.
Reviewer: En-Hao Yang

MSC:

26D10 Inequalities involving derivatives and differential and integral operators
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Full Text: DOI

References:

[1] Opial, Z., Sur une inéqalité,Ann. Polon. Math.,8 (1960), 29–32. · Zbl 0089.27403
[2] Olech, C. A simple proof of a certain result of Z. Opial, –ibid., pp. 61–63. · Zbl 0089.27404
[3] Beesack, P. R., On an integral inequality of Z. Opial,Trans. Amer. Math. Soc.,104 (1962), 470–475. · Zbl 0122.30102 · doi:10.1090/S0002-9947-1962-0139706-1
[4] Hua, L. K., On an inequality of Opial,Scientia Sinica,14 (1965), 789–790. · Zbl 0147.04803
[5] Wong, J. S. W., A discret analogue of Opial’s inequality,Canad. Math. Bull.,10 (1967), 115–118. · Zbl 0147.04901 · doi:10.4153/CMB-1967-013-3
[6] Yang, G.-S., On a certain result of Z. Opial,Proc. Japan. Acad.,42 (1966), 78–83. · Zbl 0151.05202 · doi:10.3792/pja/1195522120
[7] Чодунова, Е. К., Девин, В. И., Од одном неравинстве Мрони,Ма Замемку,2 (1967), 221–224.
[8] Calvert, J., Some generalizations of Opial’s mequality,Proc. Amer. Math. Soc.,18 (1967), 72–75. · Zbl 0144.30801
[9] Beesack, P. R. and Das, K. M., Extensions of Opial’s inequality,Pacific J. Math.,26 (1968), 215–232. · Zbl 0162.07901 · doi:10.2140/pjm.1968.26.215
[10] Zaanen, A. C., Linear Analysis, North-Holland Publ. Co., Amsterdam, 1953, Ch. 5, § 4. · Zbl 0053.25601
[11] Zygmund, A., Trigonometric Series, Vol. I, Cambridge Univ. Press, London-New York, 1959, Ch. IV, § 10. · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.