×

Renormalization group approach to lattice gauge field theories. I: Generation of effective actions in a small field approximation and a coupling constant renormalization in four dimensions. (English) Zbl 0611.53080

The author studies four-dimensional pure gauge field theories by the renormalization group approach. The analysis is restricted to small field approximation. In this region he constructs a sequence of localized effective actions by cluster expansions in one step renormalization transformations. He also defines a coupling constant renormalization by a recursive system of renormalization group equations.
Reviewer: M.Martellini

MSC:

53C80 Applications of global differential geometry to the sciences
81T17 Renormalization group methods applied to problems in quantum field theory
Full Text: DOI

References:

[1] Abers, E., Lee, B.W.: Gauge theories. Phys. Rep.9, 1 (1973) · doi:10.1016/0370-1573(73)90027-6
[2] Baaquie, B.: Gauge fixing and mass renormalization in the lattice gauge theory. Phys. Rev. D16, 2612–2627 (1977)
[3] Bałaban, T., Gawedzki, K.: A low temperature expansion for the pseudoscalar Yukawa model of the quantum fields in two space-time dimensions. Ann. Inst. H. Poincaré36, 271–400 (1982) · Zbl 0509.46059
[4] Bałaban, T.: Ultraviolet stability for a model of interacting scalar and vector fields. Aarhus Universitet, Matematisk Institut, preprint series 1981/1982, No. 19. An extended version in Harvard preprints HUTMP 82/B 116 and B 117
[5] Bałaban, T.: (Higgs)2, 3 quantum fields in a finite volume. I. A lower bound. Commun. Math. Phys.85, 603–636 (1982) · doi:10.1007/BF01403506
[6] Bałaban, T.: (Higgs)2, 3 quantum fields in a finite volume. II. An upper bound. Commun. Math. Phys.86, 555–594 (1982) · doi:10.1007/BF01214890
[7] Bałaban, T.: (Higgs)2, 3 quantum fields in a finite volume. III. Renormalization. Commun. Math. Phys.89, 411–445 (1983)
[8] Bałaban, T.: Regularity and decay of lattice Green’s functions. Commun. Math. Phys.89, 571–597 (1983) · Zbl 0555.35113 · doi:10.1007/BF01214744
[9] Bałaban, T.: Renormalization group methods in non-abelian gauge theories. Harvard preprint HUTMP 84/B 134, or Recent results in constructing gauge fields. Physica124A, 79–90 (1984)
[10] Bałaban, T.: Propagators and renormalization transformations for lattice gauge theories. I. Commun. Math. Phys.95, 17–40 (1984) · Zbl 0579.35070 · doi:10.1007/BF01215753
[11] Bałaban, T.: Propagators and renormalization transformations for lattice gauge theories. II. Commun. Math. Phys.96, 223–250 (1984) · Zbl 0579.35071 · doi:10.1007/BF01240221
[12] Bałaban, T.: Averaging operations for lattice gauge theories. Commun. Math. Phys.98, 17–51 (1985) · Zbl 0579.35072 · doi:10.1007/BF01211042
[13] Bałaban, T.: Propagators for lattice gauge theories in a background field. Commun. Math. Phys.99, 389–434 (1985) · Zbl 0579.35075 · doi:10.1007/BF01240355
[14] Bałaban, T.: Spaces of regular gauge field configurations on a lattice and gauge fixing conditions. Commun. Math. Phys.99, 75–102 (1985) · Zbl 0579.35074 · doi:10.1007/BF01466594
[15] Bałaban, T.: The variational problem and background fields in renormalization group method for lattice gauge theories. Commun. Math. Phys.102, 277–309 (1985) · Zbl 0594.58026 · doi:10.1007/BF01229381
[16] Bałaban, T.: Ultraviolet stability of three-dimensional lattice pure gauge field theories. Commun. Math. Phys.102, 255–275 (1985) · Zbl 0595.58047 · doi:10.1007/BF01229380
[17] Bałaban, T., Imbrie, J., Jaffe, A.: Exact renormalization group for gauge theories In: Progress in gauge theories, pp. 79–104, 1983 Cargèse Lectures. Lehmann, G., t’Hooft, G., Jaffe, A., Mitter, P., Singer, I., Stova, R. (eds.). New York: Plenum Press 1984
[18] Bałaban, T., Imbrie, J., Jaffe, A.: Renormalization of the Higgs model: minimizers, propagators and the stability of mean field theory. Commun. Math. Phys.97, 299–329 (1985) · Zbl 1223.81136 · doi:10.1007/BF01206191
[19] Benfatto, G., Cassandro, M., Gallavotti, G., Nicolò, F., Olivieri, E., Presutti, E., Scaciatelli, E.: Some probabilistic techniques in field theory. Commun. Math. Phys.59, 143–166 (1978) · Zbl 0381.60096 · doi:10.1007/BF01614247
[20] Benfatto, G., Cassandro, M., Gallavotti, G., Nicolò, F., Olivieri, E., Presutti, E., Scaciatelli, E.: Ultraviolet stability in Euclidean scalar field theories. Commun. Math. Phys.71, 95–130 (1980) · Zbl 0427.60098 · doi:10.1007/BF01197916
[21] Benfatto, G., Gallavotti, G., Nicolò, F.: Elliptic equations and Gaussian processes. J. Funct. Anal.36, 343–400 (1980) · Zbl 0446.60035 · doi:10.1016/0022-1236(80)90094-4
[22] Brydges, D., Fröhlich, J. Seiler, E.: On the construction of quantized gauge fields. I. General results. Ann. Phys.121, 227–284 (1979) · doi:10.1016/0003-4916(79)90098-8
[23] Brydges, D., Fröhlich, J., Seiler, E.: Construction of quantized gauge fields. II. Convergence of the lattice approximation. Commun. Math. Phys.71, 159–205 (1980) · doi:10.1007/BF01197918
[24] Brydges, D., Fröhlich, J., Seiler, E.: On the construction of quantized gauge fields. III. The two-dimensional abelian Higgs model without cutoffs. Commun. Math. Phys.79, 353–399 (1981) · doi:10.1007/BF01208500
[25] Brydges, D.: A short course on cluster expansions. Lectures given at the XLIII session of 1984 Les Houches Summer School on: Critical Phenomena, Random Systems, Gauge Theories
[26] Cammarota, C.: Decay of correlations for infinite range interactions in unbounded spin systems. Commun. Math. Phys.85, 517–528 (1982) · doi:10.1007/BF01403502
[27] Dashen, R., Gross, D.: Relationship between lattice and continuum definitions of the gauge theory coupling. Phys. Rev. D23, 2340–2348 (1981)
[28] Eckmann, J.-P., Magnen, J., Sénéor, R.: Decay properties and Borel summability for the Schwinger functions in P({\(\phi\)})2 theories. Commun. Math. Phys.39, 251–271 (1975) · doi:10.1007/BF01705374
[29] Faddeev, L., Popov, V.: Feynman diagrams for the Yang-Mills field. Phys. Lett.25 B, 29–30 (1967)
[30] Feldman, J., Osterwalder, K.: The Wightman axioms and the mass gap for weakly coupled ({\(\phi\)}4)3 quantum field theories. Ann. Phys.97, 80–135 (1976) · doi:10.1016/0003-4916(76)90223-2
[31] Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: The infrared behaviour of {\(\phi\)} 4 4 (in preparation)
[32] Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Méthodes pour la théorie constructive des champs renormalisable, asymptotiquement libres. Proceedings of RCP 25, Strasbourg, June 1984
[33] Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Bounds on completely convergent Euclidean Feynman graphs. Commun. Math. Phys.98, 273–288 (1985) · Zbl 1223.81109 · doi:10.1007/BF01220514
[34] Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Bounds on renormalized Feynman graphs. Commun. Math. Phys.100, 23–55 (1985) · Zbl 1223.81109 · doi:10.1007/BF01212686
[35] Federbusch, P.: A phase cell approach to Yang-Mills theory. I. Small field modes. II. Stability, modified renormalization group transformations. University of Michigan preprints
[36] Gallavotti, G., Martin-Löf, A., Miracle-Solé, S.: Some problems connected with the description of coexisting phases at low temperature in the Ising model. In: Statistical mechanics and mathematical problems, pp. 162–202. Lenard, A. (ed.) Lecture Notes in Physics, Vol. 20. Berlin, Heidelberg, New York: Springer 1973
[37] Gallavotti, G.: Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods, preprint Dipartamento di Matematica, Il Universitá degli studi di Roma, 1984
[38] Gallavotti, G., Nicolò, F.: Renormalization theory in four-dimensional scalar fields I and II. Commun. Math. Phys.100, 545–590 (1985);101, 247–282 (1985) · doi:10.1007/BF01217729
[39] Gawedzki, K., Kupiainen, A.: Renormalization group study of a critical lattice model. I. Convergence to the line of fixed points. Commun. Math. Phys.82, 407–433 (1981) · doi:10.1007/BF01237048
[40] Gawedzki, K., Kupiainen, A.: Renormalization group for a critical lattice model. Commun. Math. Phys.88, 77–94 (1983) · doi:10.1007/BF01206880
[41] Gawedzki, K., Kupiainen, A.: Rigorous renormalization group and asymptotic freedom. In: Scaling and self-similarity in physics, pp. 227–262, Fröhlich, J. (ed.). Boston: Birkhäuser 1983
[42] Gawedzki, K., Kupiainen, A.: Block spin renormalization group for dipole gas and ()4. Ann. Phys.147, 198–243 (1983) · doi:10.1016/0003-4916(83)90071-4
[43] Gawedzki, K., Kupiainen, A.: Massless lattice {\(\phi\)} 4 4 theory: rigorous control of a renormalizable asymptotically free model. Commun. Math. Phys.99, 197–252 (1985) · doi:10.1007/BF01212281
[44] Gawedzki, K., Kupiainen, A.: Asymptotic freedom beyond perturbation theory. Lectures given at 1984 Les Houches Summer School on: Critical Phenomena, Random Systems, Gauge Theories. Harvard preprint HUTMP 85/B 177
[45] Gell-Mann, M., Low, F.: Quantum electrodynamics at small distances. Phys. Rev.95, 1300–1312 (1954) · Zbl 0057.21401 · doi:10.1103/PhysRev.95.1300
[46] Glimm, J., Jaffe, A.: Positivity of the {\(\phi\)} 3 4 Hamiltonian. Fortschr. Phy.21, 327–376 (1973) · doi:10.1002/prop.19730210702
[47] Glimm, J., Jaffe, A., Spencer, T.: The Wightman axioms and particle structure in theP({\(\phi\)})2 quantum field model. Ann. Math.100, 585–632 (1974) · doi:10.2307/1970959
[48] Glimm, J., Jaffe, A., Spencer, T.: The particle structure of the weakly coupledP({\(\phi\)})2 model and other applications of high temperature expansions. Part I: Physics of quantum field models. Part II: The cluster expansion. In: Constructive quantum field theory, pp. 132–242. Velo, G., Wightman, A. (eds.). Lecture Notes in Physics, Vol. 25. Berlin, Heidelberg, New York: Springer 1973
[49] Glimm, J., Jaffe, A., Spencer, T.: A convergent expansion about mean field theory. I. The expansion. II. Convergence of the expansion. Ann. Phys.101, 610–630 (I), 631–669 (II) (1976) · doi:10.1016/0003-4916(76)90026-9
[50] Glimm, J., Jaffe, A.: Quantum physics: a functional point of view. New York, Heidelberg, Berlin: Springer 1981, a new edition in preparation · Zbl 0461.46051
[51] Gruber, C., Kunz, H.: General properties of polymer systems. Commun. Math. Phys.22, 133–161 (1971) · doi:10.1007/BF01651334
[52] t’Hooft, G.: Renormalization of massless Yang-Mills fields. Nucl. Phys. B33, 173–199 (1971) · doi:10.1016/0550-3213(71)90395-6
[53] t’Hooft, G.: Renormalizable Lagrangians for massive Yang-Mills fields. Nucl. Phys. B35, 167–188 (1971) · doi:10.1016/0550-3213(71)90139-8
[54] Honerkamp, J.: The question of invariant renormalizability of the massless Yang-Mills theory in a manifest covariant approach. Nucl. Phys. B48, 269–287 (1972) · doi:10.1016/0550-3213(72)90063-6
[55] Imbrie, J.: Renormalization group methods in gauge field theories. Lectures given at the XLVIII session of 1984 Les Houches Summer School on: Critical phenomena, random systems, gauge theories. Harvard preprint HUTMP 85/B176
[56] Kadanoff, L.: Notes in Migdal’s recursion formulas. Ann. Phys.100, 359–394 (1976) · doi:10.1016/0003-4916(76)90066-X
[57] Kadanoff, L.: The application of renormalization group techniques to quarks and strings. Rev. Mod. Phys.49, 267–296 (1977) · doi:10.1103/RevModPhys.49.267
[58] King, C.: TheU(1) Higgs model. I. The continuum limit. II. The infinite volume limit. Commun. Math. Phys.103, 323–349 (1986) · Zbl 0593.46064 · doi:10.1007/BF01206942
[59] Kunz, H.: Analyticity and clustering properties of unbounded spin systems. Commun. Math. Phys.59, 53–69 (1978) · doi:10.1007/BF01614154
[60] Kunz, H., Souillard, B.: Manuscript
[61] Magnen, J., Sénéor, R.: The infinite volume limit of the {\(\phi\)} 3 4 model. Ann. Inst. Henri Poincaré24, 95–159 (1976)
[62] Magnen, J., Sénéor, R.: Phase space cell expansion and Borel summability for the Euclidean {\(\phi\)} 3 4 theory. Commun. Math. Phys.56, 237–276 (1977) · doi:10.1007/BF01614211
[63] Magnen, J., Sénéor, R.: The ()4 model. CPTh preprint, Ecole Polytechnique
[64] Osterwalder, K., Seiler, E.: Gauge field theories on a lattice. Ann. Phys.110, 440–471 (1978) · doi:10.1016/0003-4916(78)90039-8
[65] Polchinski, J.: Renormalization and effective Lagrangians. Nulc. Phys. B231, 269–295 (1984) · doi:10.1016/0550-3213(84)90287-6
[66] Ruelle, D.: Statistical mechanics. New York: Benjamin 1969 · Zbl 0177.57301
[67] Seiler, E.: Gauge theories as a problem of constructive quantum field theory and statistical mechanics. Lecture Notes in Physics, Vol. 159. Berlin, Heidelberg, New York: Springer 1982
[68] Shigemitsu, J., Kogut, J.: A study of {\(\Lambda\)} parameters and crossover phenomena inSU(N) {\(\times\)} SU(N) sigma models in two dimensions. Nulc. Phys. B190 [FS3], 365–411 (1981) · doi:10.1016/0550-3213(81)90567-8
[69] Symanzik, K.: Small distance behaviour in field theory and power counting. Commun. Math. Phys.18, 227–246 (1970) · Zbl 0195.55902 · doi:10.1007/BF01649434
[70] Symanzik, K.: Small-distance-behaviour analysis and Wilson expansions. Commun. Math. Phys.23, 49–86 (1971) · Zbl 0253.42016 · doi:10.1007/BF01877596
[71] Varadarajan, V.S.: Lie groups, Lie algebras and their representations. New York: Prentice-Hall 1974 · Zbl 0371.22001
[72] De Witt, B.: Quantum theory of gravity. II. The manifestly covariant theories. III. Applications of the covariant theory. Phys. Rev.162, 1195–1239 (I), 1239–1256 (II) (1967) · Zbl 0161.46501 · doi:10.1103/PhysRev.162.1195
[73] Wilson, K.G.: Confinement of quarks. Phys. Rev. D10, 2445–2459 (1974)
[74] Wilson, K.G.: Quantum chromodynamics on a lattice. In: Quantum field theory and statistical mechanics, pp. 143–172, 1976 Cargése Lectures, Lévy, M., Mitter, P. (eds). New York: Plenum Press 1977
[75] Wilson, K.G.: Monte Carlo calculations of the lattice gauge theory. In: Recent developments in gauge theories, pp. 363–402, 1979 Cargèse Lectures. t’Hooft, G., Itzykson, C., Jaffe, A., Lehmann, M., Mitter, P., Singer, L., Stora, R. (eds.). New York: Plenum Press 1980
[76] Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: A renormalizable field theory: the massive Gross-Neveu model in two dimensions. Commun. Math. Phys.103, 67–103 (1986) · Zbl 0594.58060 · doi:10.1007/BF01464282
[77] Gawedzki, K., Kupiainen, A.: Gross-Neveu model through convergent perturbation expansions. Commun. Math. Phys.102, 1–30 (1985) · doi:10.1007/BF01208817
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.