×

On existence theorems for differential equations in Banach spaces. (English) Zbl 0569.34053

Let \(E\) be a real B-space and \(\mu\) a ball measure of noncompactness on \(E\), \(T>0\). Let \(A=\{\omega: [0,T]\times [0,\infty[\to [0,\infty[\) be continuous functions, \(\omega(t,.)\) nondecreasing, \(\omega(t,0)=0\) and such that 0 is the only continuous function on \([0,T]\) satisfying \(u(t)\leq \int^{t}_{0}\omega(s,u(s))ds\), \(u(0)=0\}\), \(C=\{\omega: ]0,T]\times [0,\infty[\to [0,\infty[\) such that for any \(\epsilon>0\) there exist \(\delta >0\) and \(t_ n\to 0\), \(t_ n>0\) and \(\rho_ n: [t_ n,T]\to [0,\infty [\) differentiable and satisfying \(\rho'_ n(t)\geq \omega(t,\rho_ n(t))\), \(\rho_ n(t)\geq \delta t_ n\), \(0<\rho_ n(t)\leq \epsilon\) for \(t\in [t_ n,T]\), \(n\in {\mathbb{N}}\}.\)
Theorem 1: Let \(\omega_ 1: [0,T]\times [0,\infty [\to [0,\infty [\) be a continuous function, \(\omega_ 1(t,.)\) nondecreasing, \(\omega_ 1(t,0)=0\) and there exist \(\omega\in C\) such that \(\omega_ 1(t,u)\leq \omega (t,u)\), \((t,u)\in]0,T]\times [0,\infty [\). Then \(\omega_ 1\in A.\)
Theorem 2: If \({\bar \omega}(t,u)=\sup \{\mu(f(t,X)): \mu(X)=u,\emptyset \neq X\subset \overline{B(x_ 0,r)}\}\), where f: [0,T]\(\times \overline{B(x_ 0,r)}\to E\) is a uniformly continuous function such that \(\mu(f(t,X))\leq \omega (t,\mu(X))\) for \(t\in [0,T]\) and for any X bounded in E, \(X\neq \emptyset\) and \(\omega\) is a given Kamke function. Then \({\bar \omega}\in A\). Theorem 3: Let f be a function bounded by \(A>0\) and as in theorem 2 and \(\omega\) is a Kamke function of C. If AT\(\leq r\) then there exists at least one solution of \(x'(t)=f(t,x(t))\) for \(t\in [0,T]\), \(x(0)=x_ 0\).
Reviewer: G.Bottaro

MSC:

34G20 Nonlinear differential equations in abstract spaces
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Bompiani, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 1 pp 298– (1925)
[2] Coddington, Theory of ordinary differential equations (1955) · Zbl 0064.33002
[3] Banaś, Measures of noncompactness in Banach spaces 60 (1980)
[4] Ambrosetti, Rend. Sem. Mat. Univ. Padova 39 pp 249– (1967)
[5] Walter, Differential and integral inequalities (1970) · doi:10.1007/978-3-642-86405-6
[6] Szufla, Bull. Acad. Felon. Sci. Sér. Sci. Math. Astronom. Phys. 19 pp 831– (1971)
[7] Szarski, Differential inequalities 43 (1965)
[8] Sadovskii, Uspehi Mat. Nauk 27 pp 81– (1972)
[9] Olech, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 pp 661– (1960)
[10] Martin, Nonlinear operators and differential equations in Banach spaces (1976)
[11] Kuratowski, Topology I (1966)
[12] Lakshmikantham, Nonlinear differential equations in abstract spaces (1981)
[13] Goebel, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 pp 367– (1970)
[14] Deimling, Proc. Colloq. Math. Soc. Janos Bolyai Differential Equations 15 pp 131– (1975)
[15] Deimling, Ordinary differential equations in Banach spaces 596 (1977) · doi:10.1007/BFb0091636
[16] Banaś, Comment. Math. Univ. Carolin. 22 pp 59– (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.