×

On an inequality of E. Heinz. (English) Zbl 0548.42002

Let \(\phi\) be non-decreasing on [0,2\(\pi)\) and \(\phi\) (2\(\pi\) -0)-\(\phi\) (0)\(\leq 2\pi\), R: [0,2\(\pi)\to {\mathbb{R}} +\) and \(R(\theta)e^{i\phi (\theta)}\sim\sum^{+\infty}_{n=-\infty}c_ ne^{ni\theta}.\) The author proves interesting inequalities for the Fourier coefficients \(c_ n\), for example: \({1\over2}| c_{-1}|\quad 2+| c_ 0|\quad 2+{1\over2}| c_ 1|\quad 2\geq 27/8\pi\quad 2\) if \(R(\theta)\equiv 1\), \(| c_ 0| +| c_ 1|\geq (4/\pi)(1- 1/\sqrt{2})R_ 0\) if \(R(\theta)\geq R_ 0\) for \(0\leq\theta <2\pi.\) An inequality of this type was derived by E. Heinz in connection with the theory of minimal surfaces.
Reviewer: F.Gackstatter

MSC:

42A16 Fourier coefficients, Fourier series of functions with special properties, special Fourier series
30B50 Dirichlet series, exponential series and other series in one complex variable
Full Text: DOI

References:

[1] Anderson, J. M.; Barth, K. F.; Brannan, D. A., Research problems in complex analysis, Bull. London Math. Soc., 9, 129-162 (1977) · Zbl 0354.30002 · doi:10.1112/blms/9.2.129
[2] Choquet, G., Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques, Bull. Sci. Math. (2), 69, 156-165 (1945) · Zbl 0063.00851
[3] Hall, R. R., On a conjecture of Shapiro about trigonometric series, J. London Math. Soc. (2), 25, 407-415 (1982) · Zbl 0521.30011 · doi:10.1112/jlms/s2-25.3.407
[4] E. Heinz,über die Lösungen der MinimalflÄchengleichung, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. (1952), 51-56. · Zbl 0048.15401
[5] Heinz, E., On one-to-one harmonic mappings, Pac. J. Math., 9, 101-105 (1959) · Zbl 0086.28204
[6] Lewy, H., On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Am. Math. Soc., 42, 689-692 (1936) · Zbl 0015.15903 · doi:10.1090/S0002-9904-1936-06397-4
[7] Nitsche, J. C. C., On harmonic mappings, Proc. Am. Math. Soc., 9, 268-271 (1958) · Zbl 0090.29402 · doi:10.2307/2033150
[8] Nitsche, J. C. C., On the constant of E. Heinz, Rend. Circ. Math. Palermo, II Ser., 8, 178-191 (1959) · Zbl 0090.05401
[9] Nitsche, J. C. C., Zum Heinzschen Lemma über harmonische Abbildungen, Arch. Math., 14, 407-410 (1963) · Zbl 0115.29402 · doi:10.1007/BF01234976
[10] Nitsche, J. C. C., Vorlesungen über Minimalflachen, Grundlehren Math. Wiss. (1975), Berlin-New York: Springer-Verlag, Berlin-New York · Zbl 0319.53003
[11] St. Ruscheweyh and P. Schwittek,On real functions of bounded variation and an application to geometric function theory, to appear. · Zbl 0575.30008
[12] de Vries, H. L., A remark concerning a lemma of Heinz on harmonic mappings, J. Math. Mech., 11, 469-471 (1962) · Zbl 0106.04904
[13] de Vries, H. L., über Koeffizientenprobleme bei Eilinien und über die Heinzsche Konstante, Math. Z., 112, 101-106 (1969) · Zbl 0176.51102 · doi:10.1007/BF01115035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.