×

On the Bayesian calibration of computer model mixtures through experimental data, and the design of predictive models. (English) Zbl 1376.86005

Summary: For many real systems, several computer models may exist with different physics and predictive abilities. To achieve more accurate simulations/predictions, it is desirable for these models to be properly combined and calibrated. We propose the Bayesian calibration of computer model mixture method which relies on the idea of representing the real system output as a mixture of the available computer model outputs with unknown input dependent weight functions. The method builds a fully Bayesian predictive model as an emulator for the real system output by combining, weighting, and calibrating the available models in the Bayesian framework. Moreover, it fits a mixture of calibrated computer models that can be used by the domain scientist as a mean to combine the available computer models, in a flexible and principled manner, and perform reliable simulations. It can address realistic cases where one model may be more accurate than the others at different input values because the mixture weights, indicating the contribution of each model, are functions of the input. Inference on the calibration parameters can consider multiple computer models associated with different physics. The method does not require knowledge of the fidelity order of the models. We provide a technique able to mitigate the computational overhead due to the consideration of multiple computer models that is suitable to the mixture model framework. We implement the proposed method in a real-world application involving the weather research and forecasting large-scale climate model.

MSC:

86A10 Meteorology and atmospheric physics
62F15 Bayesian inference
65C05 Monte Carlo methods

Software:

gss; CAM3

References:

[1] Kennedy, M. C.; O’Hagan, A., Bayesian calibration of computer models, J. R. Stat. Soc., Ser. B, Stat. Methodol., 63, 425-464 (2001) · Zbl 1007.62021
[2] Higdon, D.; Kennedy, M.; Cavendish, J. C.; Cafeo, J. A.; Ryne, R. D., Combining field data and computer simulations for calibration and prediction, SIAM J. Sci. Comput., 26, 448-466 (2004) · Zbl 1072.62018
[3] O’Hagan, A.; Kingman, J., Curve fitting and optimal design for prediction, J. R. Stat. Soc., Ser. B, Methodol., 1-42 (1978) · Zbl 0374.62070
[4] Rasmussen, C. E.; Williams, C. K.I., Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) (2005), The MIT Press
[5] Konomi, B. A.; Karagiannis, G.; Lai, K.; Lin, G., Bayesian Treed Calibration: an application to carbon capture with AX sorbent, J. Am. Stat. Assoc. (2016)
[6] Storlie, C. B.; Lane, W. A.; Ryan, E. M.; Gattiker, J. R.; Higdon, D. M., Calibration of computational models with categorical parameters and correlated outputs via bayesian smoothing spline anova, J. Am. Stat. Assoc. (2014)
[7] Wong, R. K.; Storlie, C. B.; Lee, T., A frequentist approach to computer model calibration (2014), arXiv preprint
[8] Higdon, D.; Gattiker, J.; Williams, B.; Rightley, M., Computer model calibration using high-dimensional output, J. Am. Stat. Assoc., 103 (2008) · Zbl 1469.62414
[9] Bhat, K. S.; Mebane, D. S.; Storlie, C. B.; Mahapatra, P., Upscaling uncertainty with dynamic discrepancy for a multi-scale carbon capture system (2014), arXiv preprint
[10] Higdon, D.; Gattiker, J.; Lawrence, E.; Jackson, C.; Tobis, M.; Pratola, M.; Habib, S.; Heitmann, K.; Price, S., Computer model calibration using the ensemble Kalman filter, Technometrics, 55, 488-500 (2013)
[11] Goh, J.; Bingham, D.; Holloway, J. P.; Grosskopf, M. J.; Kuranz, C. C.; Rutter, E., Prediction and computer model calibration using outputs from multifidelity simulators, Technometrics, 55, 501-512 (2013)
[12] Skamarock, W. C.; Klemp, J. B.; Dudhia, J.; Gill, D. O.; Barker, M.; Duda, K. G.; Huang, X. Y.; Wang, W.; Powers, J. G., A Description of the Advanced Research WRF Version 3 (2008), National Center for Atmospheric Research, Technical Report
[13] Pincus, R.; Barker, H. W.; Morcrette, J.-J., A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields, J. Geophys. Res., Atmospheres 1984-2012, 108 (2003)
[15] Hacker, J.; Ha, S.-Y.; Snyder, C.; Berner, J.; Eckel, F.; Kuchera, E.; Pocernich, M.; Rugg, S.; Schramm, J.; Wang, X., The US Air Force Weather Agency’s mesoscale ensemble: scientific description and performance results, Tellus A, 63, 625-641 (2011)
[16] Kain, J. S., The Kain-Fritsch convective parameterization: an update, J. Appl. Meteorol., 43, 170-181 (2004)
[17] Gramacy, R. B.; Lee, H. K., Cases for the nugget in modeling computer experiments, Stat. Comput., 22, 713-722 (2012) · Zbl 1252.62098
[18] Chen, P.; Zabaras, N.; Bilionis, I., Uncertainty propagation using infinite mixture of gaussian processes and variational bayesian inference, J. Comput. Phys., 284, 291-333 (2015) · Zbl 1351.76277
[19] Li, W.; Lin, G., An adaptive importance sampling algorithm for bayesian inversion with multimodal distributions, J. Comput. Phys., 294, 173-190 (2015) · Zbl 1349.62025
[20] Williams, C. K.; Barber, D., Bayesian classification with gaussian processes, IEEE Trans. Pattern Anal. Mach. Intell., 20, 1342-1351 (1998)
[21] Wan, X.; Karniadakis, G. E., Multi-element generalized polynomial chaos for arbitrary probability measures, SIAM J. Sci. Comput., 28, 901-928 (2006) · Zbl 1128.65009
[22] Courant, R.; Hilbert, D., Methods of Mathematical Physics (1953), John Wiley & Sons · Zbl 0729.00007
[23] Doostan, A.; Owhadi, H., A non-adapted sparse approximation of PDEs with stochastic inputs, J. Comput. Phys., 230, 3015-3034 (2011) · Zbl 1218.65008
[24] Yang, X.; Karniadakis, G. E., Reweighted \(\ell_1\) minimization method for stochastic elliptic differential equations, J. Comput. Phys., 248, 87-108 (2013) · Zbl 1349.60113
[25] Karagiannis, G.; Lin, G., Selection of polynomial chaos bases via bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs, J. Comput. Phys., 259, 114-134 (2014) · Zbl 1349.62080
[26] Karagiannis, G.; Konomi, B. A.; Lin, G., A bayesian mixed shrinkage prior procedure for spatial-stochastic basis selection and evaluation of GPC expansions: applications to elliptic SPDEs, J. Comput. Phys., 284, 528-546 (2015) · Zbl 1352.65634
[27] Shi, J.; Wang, B., Curve prediction and clustering with mixtures of gaussian process functional regression models, Stat. Comput., 18, 267-283 (2008)
[28] Le Maıtre, O.; Knio, O.; Najm, H.; Ghanem, R., Uncertainty propagation using Wiener-Haar expansions, J. Comput. Phys., 197, 28-57 (2004) · Zbl 1052.65114
[29] Sacks, J.; Welch, W. J.; Mitchell, T. J.; Wynn, H. P., Design and analysis of computer experiments, Stat. Sci., 409-423 (1989) · Zbl 0955.62619
[30] Linkletter, C.; Bingham, D.; Hengartner, N.; Higdon, D.; Kenny, Q. Y., Variable selection for gaussian process models in computer experiments, Technometrics, 48 (2006)
[31] Cressie, N., Statistics for Spatial Data, Wiley Series in Probability and Statistics (1993), Wiley: Wiley New York, NY, USA
[32] Paciorek, C.; Schervish, M., Nonstationary covariance functions for gaussian process regression, Adv. Neural Inf. Process. Syst., 16, 273-280 (2004)
[33] Wendland, H., Scattered Data Approximation (2004), Cambridge University Press, Cambridge Books Online
[34] Green, P., Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82, 711-732 (1995) · Zbl 0861.62023
[35] Hastings, W. K., Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97-109 (1970) · Zbl 0219.65008
[36] Turchin, V. F., On the computation of multidimensional integrals by the Monte-Carlo method, Theory Probab. Appl., 16, 720-724 (1971) · Zbl 0257.65030
[37] Smith, R. L., Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions, Oper. Res., 32, 1296-1308 (1984) · Zbl 0552.65004
[38] Andrieu, C.; Thoms, J., A tutorial on adaptive MCMC, Stat. Comput., 18, 343-373 (2008)
[39] Robert, C. P.; Casella, G., Monte Carlo Statistical Methods (2004), Springer · Zbl 1096.62003
[40] Roberts, G. O.; Rosenthal, J. S., General state space Markov chains and MCMC algorithms, Probab. Surv., 1, 20-71 (2004) · Zbl 1189.60131
[41] O’Hagan, A.; Bernardo, J. M.; Berger, J. O.; Dawid, A. P.; e. Smith, A. F.M.; Kennedy, M. C.; Oakley, J. E., Uncertainty Analysis and Other Inference Tools for Complex Computer Codes (with Discussion) (1999), Oxford University Press: Oxford University Press Oxford · Zbl 1175.62028
[42] Kennedy, M. C.; O’Hagan, A., Supplementary Details on Bayesian Calibration of Computer Models (2001), Technical Report, Internal Report. URL
[43] Cook, R.; Malkus, D.; Plesha, M., Concepts and Applications of Finite Element Analysis (1989), Wiley · Zbl 0696.73039
[44] McKay, W. J.C. M.D.; Beckman, R. J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 239-245 (1979) · Zbl 0415.62011
[45] Yang, B.; Qian, Y.; Lin, G.; Leung, R.; Zhang, Y., Some issues in uncertainty quantification and parameter tuning: a case study of convective parameterization scheme in the WRF regional climate model, Atmos. Chem. Phys., 12, 2409 (2012)
[46] Gilmore, M. S.; Straka, J. M.; Rasmussen, E. N., Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme, Mon. Weather Rev., 132, 2610-2627 (2004)
[47] Murphy, J. M.; Booth, B. B.; Collins, M.; Harris, G. R.; Sexton, D. M.; Webb, M. J., A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles, Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci., 365, 1993-2028 (2007)
[48] Morrison, H.; Curry, J.; Khvorostyanov, V., A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description, J. Atmos. Sci., 62, 1665-1677 (2005)
[49] Chen, F.; Dudhia, J., Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Mon. Weather Rev., 129, 569-585 (2001)
[51] Mlawer, E. J.; Taubman, S. J.; Brown, P. D.; Iacono, M. J.; Clough, S. A., Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., Atmospheres (1984-2012), 102, 16663-16682 (1997)
[52] Karl, T.; Williams, C.; Quinlan, F.; Boden, T., United States Historical Climatology Network (HCN) Serial Temperature and Precipitation Data (1990), Carbon Dioxide Information and Analysis Center, Oak Ridge National Laboratory: Carbon Dioxide Information and Analysis Center, Oak Ridge National Laboratory Oak Ridge, TN, 389 pp
[53] Maurer, E.; Wood, A.; Adam, J.; Lettenmaier, D.; Nijssen, B., A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States*, J. Climate, 15, 3237-3251 (2002)
[54] Furrer, R.; Genton, M. G.; Nychka, D., Covariance tapering for interpolation of large spatial datasets, J. Comput. Graph. Stat. (2006)
[55] Sang, H.; Huang, J. Z., A full scale approximation of covariance functions for large spatial data sets, J. R. Stat. Soc., Ser. B, Stat. Methodol., 74, 111-132 (2012) · Zbl 1411.62274
[56] Kaufman, C. G.; Bingham, D.; Habib, S.; Heitmann, K.; Frieman, J. A., Efficient emulators of computer experiments using compactly supported correlation functions, with an application to cosmology, Ann. Appl. Stat., 2470-2492 (2011) · Zbl 1234.62166
[57] Bilionis, I.; Zabaras, N.; Konomi, B. A.; Lin, G., Multi-output separable gaussian process: towards an efficient, fully bayesian paradigm for uncertainty quantification, J. Comput. Phys., 241, 212-239 (2013) · Zbl 1349.76760
[58] Perdikaris, P.; Karniadakis, G. E., Model inversion via multi-fidelity bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond, J. R. Soc. Interface, 13, 20151107 (2016)
[59] Roberts, G. O.; Gelman, A.; Gilks, W. R., Weak convergence and optimal scaling of random walk Metropolis algorithms, Ann. Appl. Probab., 7, 110-120 (1997) · Zbl 0876.60015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.