×

Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs. (English) Zbl 1349.62080

Summary: Generalized polynomial chaos (gPC) expansions allow us to represent the solution of a stochastic system using a series of polynomial chaos basis functions. The number of gPC terms increases dramatically as the dimension of the random input variables increases. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs when the corresponding deterministic solver is computationally expensive, evaluation of the gPC expansion can be inaccurate due to over-fitting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solutions, in both spatial and random domains, by coupling Bayesian model uncertainty and regularization regression methods. It allows the evaluation of the PC coefficients on a grid of spatial points, via (1) the Bayesian model average (BMA) or (2) the median probability model, and their construction as spatial functions on the spatial domain via spline interpolation. The former accounts for the model uncertainty and provides Bayes-optimal predictions; while the latter provides a sparse representation of the stochastic solutions by evaluating the expansion on a subset of dominating gPC bases. Moreover, the proposed methods quantify the importance of the gPC bases in the probabilistic sense through inclusion probabilities. We design a Markov chain Monte Carlo (MCMC) sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed methods are suitable for, but not restricted to, problems whose stochastic solutions are sparse in the stochastic space with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the accuracy and performance of the proposed methods and make comparisons with other approaches on solving elliptic SPDEs with 1-, 14- and 40-random dimensions.

MSC:

62F15 Bayesian inference
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
62G05 Nonparametric estimation
62H25 Factor analysis and principal components; correspondence analysis
62J07 Ridge regression; shrinkage estimators (Lasso)
65C60 Computational problems in statistics (MSC2010)

References:

[1] Ripley, B. D., Stochastic Simulation (1987), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York, NY, USA · Zbl 0613.65006
[2] Xiu, D., Numerical Methods for Stochastic Computations: A Spectral Method Approach (2010), Princeton University Press · Zbl 1210.65002
[3] Xiu, D.; Karniadakis, G., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 2, 619-644 (2002) · Zbl 1014.65004
[4] Ghanem, R.; Spanos, P., Stochastic Finite Elements: A Spectral Approach (2003), Dover Publications
[5] Wan, X.; Karniadakis, G., An adaptive multi-element generalized polynomial chaos method for stochastic differential equations, J. Comput. Phys., 209, 2, 617-642 (2005) · Zbl 1078.65008
[6] Wan, X.; Karniadakis, G., Multi-element generalized polynomial chaos for arbitrary probability measures, SIAM J. Sci. Comput., 28, 3, 901-928 (2006) · Zbl 1128.65009
[7] Deb, M.; Babuška, I.; Oden, J., Solution of stochastic partial differential equations using Galerkin finite element techniques, Comput. Methods Appl. Mech. Eng., 190, 48, 6359-6372 (2001) · Zbl 1075.65006
[8] Babuška, I.; Tempone, R.; Zouraris, G., Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42, 2, 800-825 (2004) · Zbl 1080.65003
[9] Mathelin, L.; Hussaini, M., A stochastic collocation algorithm for uncertainty analysis (2003), Citeseer
[10] Babuška, I.; Nobile, F.; Tempone, R., A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45, 3, 1005-1034 (2007) · Zbl 1151.65008
[11] Xiu, D.; Hesthaven, J. S., High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 3, 1118-1139 (2005) · Zbl 1091.65006
[12] Berveiller, M.; Sudret, B.; Lemaire, M., Stochastic finite element: a non intrusive approach by regression, Eur. J. Comput. Mech., 15, 1-3, 81-92 (2006) · Zbl 1325.74171
[13] Sudret, B., Global sensitivity analysis using polynomial chaos expansions, Reliab. Eng. Syst. Saf., 93, 7, 964-979 (2008)
[14] Doostan, A.; Owhadi, H., A non-adapted sparse approximation of PDEs with stochastic inputs, J. Comput. Phys., 230, 8, 3015-3034 (2011) · Zbl 1218.65008
[15] Yang, X.; Karniadakis, G., Reweighted \(l_1\) minimization method for stochastic partial differential equations, J. Comput. Phys., 248, 87-108 (2013) · Zbl 1349.60113
[16] Ji, S.; Xue, Y.; Carin, L., Bayesian compressive sensing, IEEE Trans. Signal Process., 56, 6, 2346-2356 (2008) · Zbl 1390.94231
[17] Ji, S.; Dunson, D.; Carin, L., Multitask compressive sensing, IEEE Trans. Signal Process., 57, 1, 92-106 (2009) · Zbl 1391.94258
[18] Godsill, S. J., On the relationship between Markov chain Monte Carlo methods for model uncertainty, J. Comput. Graph. Stat., 10, 2, 230-248 (2001)
[19] Dellaportas, P.; Forster, J. J.; Ntzoufras, I., On Bayesian model and variable selection using MCMC, Stat. Comput., 12, 1, 27-36 (2002) · Zbl 1247.62086
[20] Hans, C., Model uncertainty and variable selection in Bayesian lasso regression, Stat. Comput., 20, 2, 221-229 (2010)
[21] Kuo, L.; Mallick, B., Variable selection for regression models, Sankhyā, Ser. B, 60, 1, 65-81 (1998) · Zbl 0972.62016
[22] Hoeting, J.; Madigan, D.; Raftery, A.; Volinsky, C., Bayesian model averaging: a tutorial, Stat. Sci., 382-401 (1999) · Zbl 1059.62525
[23] Madigan, D.; Raftery, A., Model selection and accounting for model uncertainty in graphical models using Occamʼs window, J. Am. Stat. Assoc., 89, 428, 1535-1546 (1994) · Zbl 0814.62030
[24] Barbieri, M. M.; Berger, J. O., Optimal predictive model selection, Ann. Stat., 32, 3, 870-897 (2004) · Zbl 1092.62033
[25] Todor, R.; Schwab, C., Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients, IMA J. Numer. Anal., 27, 2, 232-261 (2007) · Zbl 1120.65004
[26] Bieri, M.; Schwab, C., Sparse high order fem for elliptic sPDEs, Comput. Methods Appl. Mech. Eng., 198, 1149-1170 (2009) · Zbl 1157.65481
[27] Blatman, G.; Sudret, B., Adaptive sparse polynomial chaos expansion based on least angle regression, J. Comput. Phys., 230, 6, 2345-2367 (2011) · Zbl 1210.65019
[28] Schwab, C.; Todor, R. A., Karhunen-Loéve approximation of random fields by generalized fast multipole methods, Uncertainty Quantification in Simulation Science. Uncertainty Quantification in Simulation Science, J. Comput. Phys., 217, 1, 100-122 (2006) · Zbl 1104.65008
[29] Park, T.; Casella, G., The Bayesian lasso, J. Am. Stat. Assoc., 103, 482, 681-686 (2008) · Zbl 1330.62292
[30] Kyung, M.; Gill, J.; Ghosh, M.; Casella, G., Penalized regression, standard errors, and Bayesian lassos, Bayesian Anal., 5, 2, 369-412 (2010) · Zbl 1330.62289
[31] Tibshirani, R., Regression shrinkage and selection via the lasso, J. R. Stat. Soc., Ser. B, 58, 267-288 (1996) · Zbl 0850.62538
[32] Lykou, A.; Ntzoufras, I., On Bayesian lasso variable selection and the specification of the shrinkage parameter, Stat. Comput., 1-30 (2012)
[33] Robert, C. P., Simulation of truncated normal variables, Stat. Comput., 5, 121-125 (1995)
[34] Lucka, F., Fast MCMC sampling for sparse Bayesian inference in high-dimensional inverse problems using \(l_1\)-type priors · Zbl 1266.65013
[35] Robert, C. P.; Casella, G., Monte Carlo Statistical Methods (2004), Springer · Zbl 1096.62003
[36] Roberts, G. O.; Gelman, A.; Gilks, W. R., Weak convergence and optimal scaling of random walk Metropolis algorithms, Ann. Appl. Probab., 7, 110-120 (1997) · Zbl 0876.60015
[37] Andrieu, C.; Thoms, J., A tutorial on adaptive MCMC, Stat. Comput., 18, 4, 343-373 (2008)
[38] Blackwell, D., Conditional expectation and unbiased sequential estimation, Ann. Math. Stat., 105-110 (1947) · Zbl 0033.07603
[39] Ferguson, J., Multivariable curve interpolation, J. ACM, 11, 2, 221-228 (1964) · Zbl 0123.33004
[40] Phillips, G. M., Interpolation and Approximation by Polynomials, CMS Books Math., vol. 14 (2003), Springer · Zbl 1023.41002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.