×

Global circulation models of the Earth atmosphere. Achievements and directions of development. (Russian. English summary) Zbl 1454.86006

Summary: This paper presents an analysis of the level of description of the main physical processes in the Earth’s atmosphere in modern General circulation models and provides a brief overview of modern models used by the main weather forecast centers. Promising directions for the development of models of the General circulation of the Earth’s atmosphere are also discussed.

MSC:

86A10 Meteorology and atmospheric physics
86-10 Mathematical modeling or simulation for problems pertaining to geophysics
76M10 Finite element methods applied to problems in fluid mechanics
76U05 General theory of rotating fluids

Software:

ICON; CAM3

References:

[1] A. S. Monin, Teoreticheskie osnovy geofizicheskoi gidrodinamiki, Gidrometeoizdat, L., 1988, 423 pp.
[2] M. A. Tolstyh, R. A. Ibraev, E. M. Volodin, K. V. Ushakov, V. V. Kalmykov, A. V. SHlyaeva, V. G. Mizyak, R. N. Habeev, Modeli global’noi atmosfery i Mirovogo okeana: algoritmy i superkomp’yuternye tekhnologii, uchebnoe posobie, Superkomp’yuternoe obrazovanie, Izd-vo MGU, M., 2013, 144 pp.
[3] H. Wan, M. A. Giorgetta, G. Zängl, M. Restelli, D. Majewski, L. Bonaventura, K. Fröhlich, D. Reinert, P. Rípodas, L. Kornblueh, J. Förstner, “The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids. Part 1: Formulation and performance of the baseline version”, Geosci. Model Dev., 6 (2013), 735-763 · doi:10.5194/gmd-6-735-2013
[4] G. Zängl, D. Reinert, P. Rípodas, M. Baldauf, “The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core”, Q. J. Roy. Meteorol. Soc., 141 (2015), 563-579 · doi:10.1002/qj.2378
[5] J. M. Dennis, M. Vertenstein, P. H. Worley, A. A. Mirin, A. P. Craig, R. Jacob, S. A. Mickelson, “Computational performance of ultra-high-resolution capability in the community earth system model”, Intern. J. for High Performance Comp. Application, 26 (2012), 5-16 · doi:10.1177/1094342012436965
[6] Description of the NCAR Community Atmosphere Model (CAM 5.0), NCAR TECHNICAL NOTE NCAR/TN-486+STR, June 2010
[7] L. Donner, B. L. Wyman, R. S. Hemler, L. W. Horowitz, Yi Ming, Ming Zhao, J. C. Golaz, P. Ginoux, S. J. Lin, M. D. Schwarzkopf et al., “The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3”, J. Climate, 24 (2011), 3484-3519 · doi:10.1175/2011JCLI3955.1
[8] A. Qaddouri, V. Lee, “The Canadian Global Environmental Multiscale model on the Yin-Yang grid system”, Q. J. Roy. Meteorol. Soc., 137 (2011), 1913-1926 · doi:10.1002/qj.873
[9] Next Generation Global Prediction System (NGGPS),
[10] A. Gassmann, “A global hexagonal C-grid non-hydrostatic dynamical core (ICON-IAP) designed for energetic consistency”, Q. J. Roy. Meteorol. Soc., 139 (2013), 152-175 · doi:10.1002/qj.1960
[11] D. Salmond, M. Hamrud, “IFS scalability and computational efficiency”, 14th ECMWF Workshop on Use of High Performance Computing in Meteorology (1-5 November 2010), 2010
[12] W. Skamarock, Global Atmospheric Solvers for Next-Generation Weather and Climate Moels,
[13] M. L. Yu, F. X. Giraldo, M. Peng, Z. J. Wang, “Localized artificial viscosity stabilization of discontinuous Galerkin methods for nonhydrostatic mesoscale atmospheric modeling”, Mon. Weather Rev., 143 (2015), 4823-4845 · doi:10.1175/MWR-D-15-0134.1
[14] J. Thuburn, C. J. Cotter, “A primal-dual mimetic finite element scheme for the rotating shallow water equations on polygonal spherical meshes”, J. Comp. Phys., 290 (2015), 274-297 · Zbl 1349.76273 · doi:10.1016/j.jcp.2015.02.045
[15] M. Taylor, J. Tribbia, M. Iskandarani, “The spectral element method for the shallow water equations on the sphere”, J. Comp. Phys., 130 (1997), 92-108 · Zbl 0868.76072 · doi:10.1006/jcph.1996.5554
[16] R. Nair, H. W. Choi, H. M. Tufo, “Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core”, Computer & Fluids, 38 (2009), 309-319 · Zbl 1237.76129 · doi:10.1016/j.compfluid.2008.04.006
[17] J. M. Dennis, M. Vertenstein, P. H. Worley, A. A. Mirin, A. P. Craig, R. Jacob, S. A. Mickelson, “Computational performance of ultra-high-resolution capability in the community earth system model”, Intern. J. for High Performance Comp. App., 26 (2012), 5-16 · doi:10.1177/1094342012436965
[18] Bašták Ďurán, J. F. Geleyn, F. A. Váňa, “Compact Model for the Stability Dependency of TKE Production-Destruction-Conversion Terms Valid for the Whole Range of Richardson Numbers”, J. Atmos. Sci., 71 (2014), 3004-3026 · doi:10.1175/JAS-D-13-0203.1
[19] P. M. M. Soares, P. M.A. Miranda, A. P. Siebesma, J. Teixeira, “An Eddy-Diffusivity/Mass-flux parameterization for dry and shallow cumulus convection”, Q. J. Roy. Meteor. Soc., 130 (2004), 3365-3384 · doi:10.1256/qj.03.223
[20] A. Staniforth, J. Côté, “Semi-Lagrangian integration schemes for atmospheric models. A review”, Mon. Weather Rev., 119 (1991), 2206-2223 · doi:10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2
[21] B. N. Chetverushkin, I. V. Mingalev, K. G. Orlov et al, “Gas-Dynamic General Circulation Model of the Lower and Middle Atmosphere of the Earth”, Mathematical Models and Computer Simulations, 10:2 (2018), 176-185 · doi:10.1134/S2070048218020047
[22] YU. M. Timofeev, A. V. Vasil’ev, Teoreticheskie osnovy atmosfernoi optiki, Nauka, SPb, 2003, 474 pp.
[23] T. A. Sushkevich, Matematicheskie modeli perenosa izlucheniya, BINOM. Laboratoriya znanij, M., 2006, 661 pp.
[24] B. A. Fomin, “Method for parameterization of gas absorption of atmospheric radiation giving the k-distribution with minimum number of terms”, Atmospheric and oceanic optics, 16:03 (2003), 244-246
[25] B. A. Fomin, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 1. FKDM, fast k-distribution model for the longwave”, J. Geophys. Res., 109 (2004), D02110
[26] B. A. Fomin, P. M. Correa, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave”, J. Geophys. Res., 110 (2005), D02106
[27] E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave”, J. Geophys. Res., 102:D14 (1997), 16,663-16,682
[28] M. J. Iacono, E. J. Mlawer, S. A. Clough, “Validation of the RRTM shortwave radiation model and comparison to GCM shortwave models”, Proc. of the Eleventh Atmospheric Radiation Measurement (ARM) Sci. Team Meeting, 2001
[29] M. J. Iacono, J. S. Delamere, E. J. Mlawer, S. A. Clough, J. J. Morcrette, “Cloudy Sky RRTM Shortwave Radiative Transfer and Comparison to the Revised ECMWF Shortwave Model”, Twelfth ARM Science Team Meeting Proc. (St. Petersburg, Florida, April 8-12, 2002)
[30] S. Cusack, J. M. Edwards, J. M. Crowther, “Investigating k-distributing method for parameterizing gaseous absorption in the Hadley Centre Climate Model”, J. Geo. Res., 104 (1999), 2051-2057 · doi:10.1029/1998JD200063
[31] T. Nakajima, M. Tsukamoto, Y. Tsushima, A. Numaguti, T. Kimura, “Modeling of the radiation process in an atmospheric general circulation model”, Appl. Opt., 39 (2000), 4869-4878 · doi:10.1364/AO.39.004869
[32] R. J. Hogan, “The Full-Spectrum Correlated-k Method for Longwave Atmospheric Radiative Transfer Using an Effective Planck Function”, J. Atmos. Sciences, 2010
[33] A. V. Shilkov, M. N. Gerthev, “Verification of the Lebesgue averaging method”, Mathematical Models and Computer Simulations, 8:2 (2016), 93-107 · Zbl 1349.80022 · doi:10.1134/S2070048216020125
[34] M. A. Tolstykh, J. F. Geleyn, E. M. Volodin, S. V. Kostrykin, R. Y. Fadeev, V. V. Shashkin, N. N. Bogoslovskii, R. M. Vilfand, D. B. Kiktev, T. V. Krasjuk, V. G. Mizyak, A. V. Shlyaeva, I. N. Ezau, A. Y. Yurova, “Development of the multiscale version of the SL-AV global atmosphere model”, Russian meteorology and hydrology, 2015, no. 6, 374-382 · doi:10.3103/S1068373915060035
[35] M. A. Tolstykh, R. Yu. Fadeev, V. V. Shashkin, S. V. Travova (Makhnorylova), G. S. Goyman, V. G. Mizyak, V. S. Rogutov, A. V. Shlyaeva, A. Yu. Yurova, “Development of SL-AV global semi-Lagrangian atmosphere model in 2009-2019”, Hydrometeorological Research and Forecasting, 2019, no. 4 (374), 77-91
[36] I. V. Mingalev, E. A. Fedotova, K. G. Orlov, “Parameterization of the Infrared Molecular Absorption in the Earth”s Lower and Middle Atmosphere”, Atmospheric and Oceanic Optics, 31:06 (2018), 582-589 · doi:10.1134/S102485601901010X
[37] B. N. Chetverushkin, I. V. Mingalev, E. A. Fedotova, K. G. Orlov et al., “The calculation of the intrinsic radiation of atmosphere in the general circulation model of the lower and middle atmosphere of the Earth”, Math. Mod. & Comp.Simul., 12:5 (2020) · Zbl 1440.85004
[38] N. I. Ignat’ev, I. V. Mingalev, A. V. Rodin, E. A. Fedotova, “A new version of the discrete ordinate method for the calculation of the intrinsic radiation in horizontally homogeneous atmospheres”, Comp. Math. and Math. Physics, 55:10 (2015), 1713-1726 · Zbl 1332.85002 · doi:10.1134/S0965542515100103
[39] N. A. Fuchs, The Mechanics of Aerosols, Pergamon, NY; Macmillan, London, 1964, 408 pp.
[40] P.C. Reist, Introduction to aerosol science, Macmillan; Collier Macmillan, Cop., London, 1984, 299 pp.
[41] V. N. Piskunov, Dinamika aerozolej, Fizmatlit, M., 2010, 296 pp.
[42] A. E. Aloyan, Modelirovanie dinamiki i kinetiki gazovyh primesei i aerozolei v atmosphere. Institut vychislitel’noi matematiki RAN, Nauka, M., 2008, 415 pp.
[43] L. Gerard, J. M. Piriou, R. Brožkova, J. F. Geleyn, D. Banciu, “Cloud and Precipitation Parameterization in a Meso-Gamma-Scale Operational Weather Prediction Model”, Mon. Wea. Rev., 137 (2009), 3960-3977 · doi:10.1175/2009MWR2750.1
[44] V. Khvorostyanov, K. Sassen, “Cirrus cloud simulation using explicit microphysics and radiation. Part II: Microphysics, vapor and ice mass budgets, and optical and radiative properties”, J. Atmos. Sci., 55 (1998), 1822-1845 · doi:10.1175/1520-0469(1998)055<1822:CCSUEM>2.0.CO;2
[45] Ph. Lopez, “Implementation and validation of a new prognostic large-scale cloud and precipitation scheme for climate and data assimilation purposes”, Quart. J. Roy. Meteor. Soc., 28 (2002), 229-258 · doi:10.1256/00359000260498879
[46] M. Hortal, “Aspects of the numerics of the ECMWF model”, Recent developments in numerical methods for atmospheric modelling, Proc. of the ECMWF Seminar (7-11 September 1998, Reading, UK), 1999, 50
[47] P. Courtier, C. Freydier, J. F. Geleyn, F. Rabier, M. Rochas, “The AR-PEGE project at Météo-France”, Proc. of the ECMWF seminar on numerical methods in atmospheric models (1991, Reading, UK), v. 2, 1992, 192-208
[48] A. Staniforth, T. Melvin, N. Wood, “A new dynamical core for the Unified Model”, ECMWF Seminar on Numerical Methods for Atmosphere and Ocean Modelling (Sept. 2013, Reading, UK), 2014, 15-30
[49] I. A. Rozinkina, E. D. Astakhova, V. I. Tsvetkov, Yu. V. Alferov, T. Ya. Ponomareva, A. E. Nikitin, D. V. Vaskova, V. V. Kopeykin, E. V. Churiulin, “Development of deterministic and ensemble numerical weather prediction systems based on the global spectral atmos-pheric model of the Hydrometcentre of Russia in 2009-2019”, Hydrometeorological Res. and Forecasting, 2019, no. 4(374), 54-76
[50] Description of the Nonhydrostatic Regional COSMO-Model. Part I-VII, WRF-ARW, razrabotannaya v NCAR,
[51] ARW vers. 3 Model.System User’s Guide, 2008, 214 pp.
[52] M. B. Ek et al, “Implementation of Noah land surface model advances in National Centers for Environmental Prediction operational Mesoscale Eta model”, J. Geoph. Res., 108:D22 (2003), 8851
[53] L. Donner, B. L. Wyman, R. S. Hemler, L. W. Horowitz, Yi Ming, Zhao Ming, J. C. Golaz, P. Ginoux, S. J. Lin, M. D. Schwarzkopf et al., “The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3”, J. Climate, 24 (2011), 3484-3519 · doi:10.1175/2011JCLI3955.1
[54] Description of the NCAR Community Atmosphere Model (CAM 5.0), NCAR TECH-NICAL NOTE NCAR/TN-486+STR,
[55] V. A. Bakhtin, V. A. Kryukov, B. N. Chetverushkin, E. V. Shil’nikov, “Extension of the DVM parallel programming model for clusters with heterogeneous nodes”, Doklady Mathematics, 84:3 (2011), 879-881 · doi:10.1134/S1064562411060408
[56] B. N. Chetverushkin, E. V. Shilnikov, “Software package for 3D viscous gas flow simulation on multiprocessor computer systems”, CM&MP, 48:2 (2008), 295-305 · Zbl 1224.65318
[57] V. P. Dymnikov, V. N. Lykosov, E. M. Volodin, “Problems of modeling climate and climate change”, Izvestiya, Atmosph. and Oceanic Phys., 42:5 (2006), 568-586 · doi:10.1134/S0001433806050045
[58] V. N. Lykosov i dr., Supercomputernoe modelirovanie v fisike klimaticheskoi sistemy, Izd-vo MGU, M., 2012, 408 pp.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.