×

The calculation of the intrinsic radiation of atmosphere in the general circulation model of the lower and middle atmosphere of the Earth. (Russian. English summary) Zbl 1440.85004

Summary: This paper presents a description of the block of calculation of the intrinsic radiation of the Earth atmosphere in the IR range, which is developed for the model of the General circulation of the lower and middle atmosphere. This block uses a new parametrization of molecular absorption in the frequency range from 10 to \(2000\) cm\(^{-1}\) in the height range from the Earth’s surface to 76 km. The algorithm for constructing this parametrization takes into account the change in the gas composition of the atmosphere with height and has a number of other advantages. The results of the reference calculations of the field of natural radiation of the Earth’s atmosphere are compared with the results of calculations performed using parametrization, and it is shown that the presented parametrization has good accuracy in the lower and middle atmosphere in the absence of clouds, and in the presence of cloud layers with a large optical thickness.

MSC:

85A20 Planetary atmospheres
85A25 Radiative transfer in astronomy and astrophysics
86A10 Meteorology and atmospheric physics

References:

[1] Iu. M. Timofeev, A. V. Vasilev, Teoreticheskie osnovy atmosfernoi optiki, Nauka, SPb, 2003, 474 pp.
[2] K. Ia. Kondratev, Aktinometriia, Gidrometeoizdat, L., 1965, 692 pp.
[3] Kuo-Nan Lion, Ah introduction to atmospheric radiation, Academic Press, NY, 1980, 577 pp.
[4] T. A. Sushkevich, Matematicheskie modeli perenosa izlucheniia, BINOM, Laboratoriia znanii, M., 2006, 661 pp.
[5] S. D. Tvorogov, “Some aspects of the problem of representation of the absorption function by a series of exponents”, Atmosph. and oceanic optics, 7:3 (1994), 165-171
[6] S. D. Tvorogov, L. I. Nesmelova, O. B. Rodimova, “Representation of the transmission function by the series of exponents”, Atmosph. and ocean. optics, 9:3 (1996), 239-242
[7] L. I. Nesmelova, O. B. Rodimova, S. D. Tvorogov, “Calculation of transmission functions in near infrared region using series of exponents”, Atmospheric and oceanic optics, 10:12 (1997), 923-927
[8] L. I. Nesmelova, O. B. Rodimova, S. D. Tvorogov, “Application of exponential series to calculation of radiative fluxes in the molecular atmosphere”, Atmospheric and oceanic optics, 12:9 (1999), 735-739
[9] S. D. Tvorogov, “Application of exponential series to frequency integration of the radiative transfer equation”, Atmospheric and oceanic optics, 12:9 (1999), 730-734
[10] S. D. Tvorogov, O. B. Rodimova, “Calculation of transmission functions at small pressures”, Atmospheric and oceanic optics, 21:11 (2008), 797-803
[11] B. A. Fomin, “Method for parameterization of gas absorption of atmospheric radiation giving the k-distribution with minimum number of terms”, Atmospheric and oceanic optics, 16:3 (2003), 244-246
[12] B. A. Fomin, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 1. FKDM, fast k-distribution model for the longwave”, J. Geophys. Res., 109 (2004), D02110 · doi:10.1029/2003JD003802
[13] B. A. Fomin, P. M. Correa, “A k-distribution technique for radiative transfer simulation in in-homogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave”, J. Geophys. Res., 110 (2005), D02106 · doi:10.1029/2004JD005163
[14] E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave”, J. Geophys. Res., 102:D14 (1997), 16,663-16,682
[15] S. Cusack, J. M. Edwards, J. M. Crowther, “Investigating k-distributing method for parametrizing gaseous absorption in the Hadley Centre Climate Model”, J. Geophys. Res., 104 (1999), 2051-2057 · doi:10.1029/1998JD200063
[16] T. Nakajima, M. Tsukamoto, Y. Tsushima, A. Numaguti, T. Kimura, “Modeling of the radia-tion process in an atmospheric general circulation model”, Appl. Opt, 39 (2000), 4869-4878 · doi:10.1364/AO.39.004869
[17] R. J. Hogan, “The Full-Spectrum Correlated-k Method for Longwave Atmospheric Radiative Transfer Using an Effective Planck Function”, J. Atmos. Sciences, 2010
[18] B. N. Chetverushkin, Matematicheskoe modelirovanie zadach dinamiki izluchaiushchego gaza, Nauka, M., 1985, 204 pp.
[19] A. V. Shilkov, M. N. Gerthev, “Verification of the Lebesgue averaging method”, Mathematical Models and Computer Simulations, 8:2 (2016), 93-107 · Zbl 1349.80022 · doi:10.1134/S2070048216020125
[20] B. N. Chetverushkin, I. V. Mingalev, K. G. Orlov, V. M. Chechetkin, V. S. Mingalev, O. V. Mingalev, “Gas-Dynamic General Circulation Model of the Lower and Middle Atmosphere of the Earth”, Math. Mod. and Comp. Simulat., 10:2 (2018), 176-185 · Zbl 1440.85004 · doi:10.1134/S2070048218020047
[21] I. V. Mingalev, E. A. Fedotova, K. G. Orlov, “Parameterization of the infrared molecular absorption in the Earth”s lower and middle atmosphere”, Atmospheric and Oceanic Optics, 31:6 (2018), 582-589 · doi:10.1134/S102485601901010X
[22] L. S. Rothman et al, “The HITRAN2012 molecular spectroscopic database”, J. Quant. Spectrosc. Rad. Transfer., 130 (2013), 4-50 · doi:10.1016/j.jqsrt.2013.07.002
[23] E. J. Mlawer et al., “Development and recent evaluation of the MT CKD model of continuum absorption”, Phylosophical Transactions of the Royal Society, 370 (2012), 2520-2556 · doi:10.1098/rsta.2011.0295
[24] N. I. Ignat’ev, I. V. Mingalev, A. V. Rodin, E. A. Fedotova, “A New Version of the Discrete Ordinate Method for the Calculation of the Intrinsic Radiation in Horizontally Homogeneous Atmospheres”, Comp. Math. and Math. Physics, 55:10 (2015), 1713-1726 · Zbl 1332.85002 · doi:10.1134/S0965542515100103
[25] A. A. Samarskii, E. S. Nikolaev, Metody resheniia setochnykh uravnenii, Gl. red. fiz.-mat. lit. izd.-va Nauka, M., 1978, 592 pp.
[26] I. V. Mingalev, E. A. Fedotova, K. G. Orlov, “Vliianie opticheski tolstykh sloev na nagrev atmosfery sobstvennym izlucheniem”, Sovremennye problemy distantsionnogo zondirovaniia Zemli iz kosmosa, 14:5 (2017), 100-108
[27] R. A. McClatchey, H. J. Bolle, K. Ya. Kondratyev, A preliminary cloudless standard atmosphere for radiation computation, World Climate Research Programme, WCP112, WMO/TD № 24, International Association For Meteorology And Atmospheric Physics, Radiation Commission, 1986, 60 pp.
[28] V. A. Gasilov, P. A. Kuchugov, O. G. Olkhovskaya, B. N. Chetverushkin, “Solution of the self-adjoint radiative transfer equation on hybrid computer systems”, Comput. Math. Math. Phys., 56:6 (2016), 987-995 · Zbl 1358.82031 · doi:10.1134/S0965542516060130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.