×

On the Monge-Ampère equation with boundary blow-up: existence, uniqueness and asymptotics. (English) Zbl 1148.35022

The authors study the Monge-Ampére equation
\[ \det D^2u= b(x)f(u) \]
in a smooth, strictly convex, bounded domain \(\Omega\) in \(\mathbb R^N\), \(N\geq 2\), with the boundary condition
\[ \lim_{x\to \partial \Omega} u(x)=\infty, \]
where \(f\in C[0,\infty)\cap C^\infty(0,\infty)\) is positive, increasing and such that \(f(0)=0\), and \(b\in C^{\infty}(\bar\Omega)\) is positive in \(\Omega\). Existence of a strictly convex blow-up solution in \(C^\infty(\Omega)\) is guaranteed if there exists a positive and non-decreasing function \(f_0\) on \([0,\infty)\) such that \(f_0(u)\leq f(u)\) for every \(u>0\), \(f_0^{1/N}\) is locally Lipschitz continuous on \([0,\infty)\) and satisfies the Keller-Osserman condition, and, finally, \(f_0^{-1/N}\) is convex in \((0,\infty)\). In particular, this generalizes the result by A. C. Lazer and P. J. McKenna [J. Math. Anal. Appl. 197, No. 2, 341–362 (1996; Zbl 0856.35042)] where existence was proven if \(f(u)=u^q\) with \(q>N\). Moreover the authors provide asymptotic estimates of the behaviour of such solutions near \(\partial \Omega\) and prove uniqueness when the variation of \(f\) at \(\infty\) is regular of index \(q>N\).

MSC:

35J60 Nonlinear elliptic equations
35B40 Asymptotic behavior of solutions to PDEs
35J67 Boundary values of solutions to elliptic equations and elliptic systems
35B65 Smoothness and regularity of solutions to PDEs

Citations:

Zbl 0856.35042
Full Text: DOI

References:

[1] Bandle C. and Marcus M. (1992). Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior. J. Anal. Math. 58: 9–24 · Zbl 0802.35038 · doi:10.1007/BF02790355
[2] Bandle C. and Marcus M. (1995). Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary. Ann. Inst. H. Poincaré Anal. Non Linéaire 12: 155–171 · Zbl 0840.35033
[3] Bieberbach L. (1916). {\(\Delta\)}u = e u und die automorphen Funktionen. Math. Ann. 77: 173–212 · doi:10.1007/BF01456901
[4] Bingham N.H., Goldie C.M. and Teugels J.L. (1987). Regular Variation. Encyclopedia of Mathematics and its Applications, vol. 27. Cambridge University Press, Cambridge · Zbl 0617.26001
[5] Caffarelli L., Nirenberg L. and Spruck J. (1984). The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge–Ampère equation. Comm. Pure Appl. Math. 37: 369–402 · Zbl 0598.35047 · doi:10.1002/cpa.3160370306
[6] Cheng S.Y. and Yau S.-T. (1980). On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation. Comm. Pure Appl. Math. 33: 507–544 · Zbl 0506.53031 · doi:10.1002/cpa.3160330404
[7] Cheng, S.Y., Yau, S.-T.: The real Monge–Ampère equation and affine flat structures. In: Chern, S.S., Wu, W. (eds.) Proceedings of 1980 Beijing Symposium on Differential Geometry and Differential Equations, vol. 1, pp. 339–370, Beijing. Science Press, New York (1982) · Zbl 0517.35020
[8] Chou K.-S. and Wang X.J. (2001). A variational theory of the Hessian equation. Comm. Pure Appl. Math. 54: 1029–1064 · Zbl 1035.35037 · doi:10.1002/cpa.1016
[9] Cîrstea, F.-C.: Elliptic equations with competing rapidly varying nonlinearities and boundary blow-up (submitted), Preprint available online at http://www.maths.anu.edu.au/irstea · Zbl 1162.35036
[10] Cîrstea F.-C. and Du Y. (2005). General uniqueness results and variation speed for blow-up solutions of elliptic equations. Proc. Lond. Math. Soc. 91: 459–482 · Zbl 1108.35068 · doi:10.1112/S0024611505015273
[11] Cîrstea F.-C. and Rădulescu V. (2002). Uniqueness of the blow-up boundary solution of logistic equations with absorption. C. R. Math. Acad. Sci. Paris 335: 447–452 · Zbl 1183.35124
[12] Cîrstea F.-C. and Radulescu V. (2004). Extremal singular solutions for degenerate logistic-type equations in anisotropic media. C. R. Math. Acad. Sci. Paris 339: 119–124 · Zbl 1101.35034
[13] Cîrstea F.-C. and Rădulescu V. (2006). Nonlinear problems with boundary blow-up: a Karamata regular variation theory approach. Asymptot. Anal. 46: 275–298 · Zbl 1245.35037
[14] Colesanti A., Salani P. and Francini E. (2000). Convexity and asymptotic estimates for large solutions of Hessian equations. Differ. Integral Equ. 13: 1459–1472 · Zbl 0977.35046
[15] de Haan, L.: (1970) On Regular Variation and its Application to the Weak Convergence of Sample Extremes, University of Amsterdam/Math. Centre Tract 32, Amsterdam · Zbl 0226.60039
[16] Du Y. and Huang Q. (1999). Blow-up solutions for a class of semilinear elliptic and parabolic equations. SIAM J. Math. Anal. 31: 1–18 · Zbl 0959.35065 · doi:10.1137/S0036141099352844
[17] Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983) · Zbl 0562.35001
[18] Guan B. (1994). The Dirichlet problem for a class of fully nonlinear elliptic equations. Comm. Partial Differ. Equ. 19: 399–416 · Zbl 0796.35045 · doi:10.1080/03605309408821022
[19] Guan B. and Jian H.-Y. (2004). The Monge–Ampère equation with infinite boundary value. Pac. J. Math. 216: 77–94 · Zbl 1126.35318 · doi:10.2140/pjm.2004.216.77
[20] Karamata J. (1930). Sur un mode de croissance régulière des fonctions. Mathematica (Cluj) 4: 38–53 · JFM 56.0907.01
[21] Karamata J. (1933). Sur un mode de croissance régulière. Théorèmes fondamentaux. Bull. Soc. Math. France 61: 55–62 · Zbl 0008.00807
[22] Keller J.B. (1957). On solutions of {\(\Delta\)}u = f(u). Comm. Pure Appl. Math. 10: 503–510 · Zbl 0090.31801 · doi:10.1002/cpa.3160100402
[23] Lazer A.C. and McKenna P.J. (1996). On singular boundary value problems for the Monge–Ampère operator. J. Math. Anal. Appl. 197: 341–362 · Zbl 0856.35042 · doi:10.1006/jmaa.1996.0024
[24] Lions P.-L. (1985). Sur les équations de Monge–Ampère. (French) [On Monge–Ampère equations]. Arch. Ration. Mech. Anal. 89: 93–122 · Zbl 0579.35027 · doi:10.1007/BF00282327
[25] Lions P.-L. (1985). Two remarks on Monge–Ampère equations. Ann. Mat. Pura Appl. 142: 263–275 · Zbl 0594.35023 · doi:10.1007/BF01766596
[26] Loewner, C. Nirenberg, L.: Partial differential equations invariant under conformal or projective transformations. In: Ahlfors, L.V., et al. (eds.) Contributions to Analysis, pp. 245–272. Academic Press, New York (1974) · Zbl 0298.35018
[27] Marcus M. and Véron L. (1997). Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 14: 237–275 · Zbl 0877.35042 · doi:10.1016/S0294-1449(97)80146-1
[28] Marcus M. and Véron L. (2003). Existence and uniqueness results for large solutions of general nonlinear elliptic equations. J. Evol. Equ. 3: 637–652 · Zbl 1160.35408 · doi:10.1007/s00028-003-0122-y
[29] Matero J. (1996). The Bieberbach–Rademacher problem for the Monge–Ampère operator. Manuscripta Math. 91: 379–391 · Zbl 0873.35026 · doi:10.1007/BF02567962
[30] Osserman R. (1957). On the inequality {\(\Delta\)}u f(u). Pac. J. Math. 7: 1641–1647 · Zbl 0083.09402
[31] Pogorelov A.V. (1978). The multidimensional Minkovski problem. Wiley, New York
[32] Rademacher, H.: Einige besondere probleme partieller Differentialgleichungen. In: Die Differential und Integralgleichungen der Mechanik und Physik, I, Rosenberg, New York, 2nd edn, pp. 838–845 (1943)
[33] Resnick S.I. (1987). Extreme Values, Regular Variation and Point Processes. Springer, New York · Zbl 0633.60001
[34] Salani P. (1998). Boundary blow-up problems for Hessian equations. Manuscripta Math. 96: 281–294 · Zbl 0907.35052 · doi:10.1007/s002290050068
[35] Seneta, E.: (1976) Regularly varying functions. Lecture Notes in Mathematics, vol. 508. Springer, Berlin · Zbl 0324.26002
[36] Takimoto K. (2006). Solution to the boundary blowup problem for k-curvature equation. Calc. Var. Partial Differ. Equ. 26: 357–377 · Zbl 1105.35039 · doi:10.1007/s00526-006-0011-7
[37] Trudinger N.S. (1983). Fully nonlinear, uniformly elliptic equations under natural structure conditions. Trans. Am. Math. Soc. 278: 751–769 · Zbl 0518.35036 · doi:10.1090/S0002-9947-1983-0701522-0
[38] Trudinger N.S. (1995). On the Dirichlet problem for Hessian equations. Acta Math. 175: 151–164 · Zbl 0887.35061 · doi:10.1007/BF02393303
[39] Trudinger N.S. (1997). Weak solutions of Hessian equations. Comm. Partial Differ. Equ. 22: 1251–1261 · Zbl 0883.35035 · doi:10.1080/03605309708821299
[40] Trudinger N.S. and Urbas J. (1983). The Dirichlet problem for the equation of prescribed Gauss curvature. Bull. Aust. Math. Soc. 28: 217–231 · Zbl 0524.35047 · doi:10.1017/S000497270002089X
[41] Tso K. (1990). On a real Monge–Ampère functional. Invent. Math. 101: 425–448 · Zbl 0724.35040 · doi:10.1007/BF01231510
[42] Wang X.J. (1994). A class of fully nonlinear elliptic equations and related functionals. Indiana Univ. Math. J 43: 25–54 · Zbl 0805.35036 · doi:10.1512/iumj.1994.43.43002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.