×

Weak solutions of Hessian equations. (English) Zbl 0883.35035

Let \(D^2u\) be the Hessian matrix of a function \(u(x)\) defined in a domain \(\Omega\subset \mathbb{R}^n\). For \(1\leq k\leq n\), let \(S_k(\lambda [D^2u])\) be the \(k^{th}\) elementary symmetric function of the eigenvalues of the matrix \(D^2u\). Let \(\psi\) be a function of \(L^p(\Omega)\) for some \(p\geq 1\). The equation \(S_k(\lambda [D^2u])=\psi\) is investigated.
After a suitable definition of \(k\)-convexity for the domain \(\Omega\), the notion of weak solution is defined by approximation. The main result is the following. Let \(\Omega\) be a uniformly \((k-1)\)-convex domain for \(2\leq k\leq n\), \(\phi\in C^0(\overline \Omega)\) and \(\psi\) a nonnegative function in \(L^p(\Omega)\) for \(p\) greater than \(n/2k\). Then there exists a unique weak solution \(u\in C^0(\overline \Omega)\) satisfying \(u=\phi\) on \(\partial \Omega\). Furthermore, \(u\in C^\alpha(\Omega)\) for any exponent \(\alpha\) less than 1 and satisfying \(\alpha\leq 2-n/2k\). The proof uses interesting comparison estimates as well as isoperimetric inequalities for quermassintegrals.
Reviewer: G.Porru (Cagliari)

MSC:

35J60 Nonlinear elliptic equations
35D05 Existence of generalized solutions of PDE (MSC2000)
35D10 Regularity of generalized solutions of PDE (MSC2000)
Full Text: DOI

References:

[1] Aleksandrov A.D., Vestnik Leningrad Univ. 13 pp 25– (1958)
[2] ”Convex Analysis and Nonlinear Geometric Elliptic Equations.”.
[3] Crandall M.G., Functions of the eigenvalues of the Hessian.Acta Math. 155 pp 261– (1985)
[4] DOI: 10.1002/cpa.3160410105 · Zbl 0672.35028 · doi:10.1002/cpa.3160410105
[5] DOI: 10.1002/cpa.3160300104 · Zbl 0347.35019 · doi:10.1002/cpa.3160300104
[6] Colesanti A., Bull.Aust.Math.Soc. 30 (1977)
[7] Trudinger, N.S. 1983. ”Elliptic Partial Differential Equation of Second order”. Springer-Verlag. · Zbl 0562.35001
[8] DOI: 10.1080/03605309408821022 · Zbl 0796.35045 · doi:10.1080/03605309408821022
[9] English translation in Math. USSR-Sb., 128 pp 403,4033– (1985)
[10] Ann. Inst. Henri Poincaré, Analyse Non Linéaire 4 pp 405– (1987)
[11] 1994.Lectures on fully nonlinear elliptic equations.Lipschitz Lecutres, Univ.of Bonn,4
[12] DOI: 10.1002/cpa.3160430204 · Zbl 0705.35038 · doi:10.1002/cpa.3160430204
[13] 1964.Monge-Ampére equations of elliptic type.Noordhoff,43
[14] DOI: 10.1007/BF02393303 · Zbl 0887.35061 · doi:10.1007/BF02393303
[15] Progress in Elliptic and Parabolic Equations 175 pp 217– (1996)
[16] DOI: 10.1512/iumj.1990.39.39020 · Zbl 0724.35028 · doi:10.1512/iumj.1990.39.39020
[17] DOI: 10.1512/iumj.1994.43.43002 · Zbl 0805.35036 · doi:10.1512/iumj.1994.43.43002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.