×

Two- and three-dimensional elastic networks with rigid junctions: modeling within the theory of micropolar shells and solids. (English) Zbl 1431.74076

Summary: For two- and three-dimensional elastic structures made of families of flexible elastic fibers undergoing finite deformations, we propose homogenized models within the micropolar elasticity. Here we restrict ourselves to networks with rigid connections between fibers. In other words, we assume that the fibers keep their orthogonality during deformation. Starting from a fiber as the basic structured element modeled by the Cosserat curve beam model, we get 2D and 3D semi-discrete models. These models consist of systems of ordinary differential equations describing the statics of a collection of fibers with certain geometrical constraints. Using a specific homogenization technique, we introduce two- and three-dimensional equivalent continuum models which correspond to the six-parameter shell model and the micropolar continuum, respectively. We call two models equivalent if their approximations coincide with each other up to certain accuracy. The two- and three-dimensional constitutive equations of the networks are derived and discussed within the micropolar continua theory.

MSC:

74K25 Shells
74A35 Polar materials

References:

[1] Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer, New York (2005) · Zbl 1098.74001
[2] Arora, A., Kumar, A., Steinmann, P.: A computational approach to obtain nonlinearly elastic constitutive relations of special Cosserat rods. Comput. Methods Appl. Mech. Eng. 350, 295-314 (2019) · Zbl 1441.74034
[3] Ashby, M.F.: The properties of foams and lattices. Phil. Trans. R. Soc. A. 364(1838), 15-30 (2006)
[4] Beckh, M.: Hyperbolic Structures: Shukhov’s Lattice Towers-Forerunners of Modern Lightweight Construction. Wiley, Chichester (2015)
[5] Belyaev, A.K., Eliseev, V.V.: Flexible rod model for the rotation of a drill string in an arbitrary borehole. Acta Mech. 229(2), 841-848 (2018) · Zbl 1384.74022
[6] Bigoni, D., Drugan, W.J.: Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74(4), 741-753 (2007)
[7] Bîrsan, M., Altenbach, H., Sadowski, T., Eremeyev, V.A., Pietras, D.: Deformation analysis of functionally graded beams by the direct approach. Compos. Part B Eng. 43(3), 1315-1328 (2012)
[8] Burzyński, S., Chróścielewski, J., Daszkiewicz, K., Witkowski, W.: Geometrically nonlinear FEM analysis of FGM shells based on neutral physical surface approach in 6-parameter shell theory. Compos. Part B Eng. 107, 203-213 (2016)
[9] Burzynski, S., Chróscielewski, J., Daszkiewicz, K., Witkowski, W.: Elastoplastic nonlinear FEM analysis of FGM shells of Cosserat type. Compos. Part B Eng. 154, 478-491 (2018)
[10] Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Continuum Mech. Thermodyn. 28(1-2), 139-156 (2016) · Zbl 1348.74190
[11] Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids 21(5), 562-577 (2016) · Zbl 1370.74084
[12] Chesnais, C., Boutin, C., Hans, S.: Effects of the local resonance in bending on the longitudinal vibrations of reticulated beams. Wave Motion 57, 1-22 (2015)
[13] Chróścielewski, J., Makowski, J., Pietraszkiewicz, W.: Statyka i dynamika powłok wielopłatowych: Nieliniowa teoria i metoda elementów skończonych (in Polish). Biblioteka Mechaniki Stosowanej, Wydawnictwo IPPT PAN (2004)
[14] Chróścielewski, J., Schmidt, R., Eremeyev, V.A.: Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches. Continuum Mech. Thermodyn. 31(1), 147-188 (2019)
[15] De Silva, C.N., Whitman, A.B.: Thermodynamical theory of directed curves. J. Math. Phys. 12(8), 1603-1609 (1971) · Zbl 0242.73004
[16] dell’Isola, F., Steigmann, D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118(1), 113-125 (2015) · Zbl 1305.74024
[17] dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 060804 (2015)
[18] Dos Reis, F., Ganghoffer, J.F.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112, 354-363 (2012)
[19] El Nady, K., Dos Reis, F., Ganghoffer, J.F.: Computation of the homogenized nonlinear elastic response of 2D and 3D auxetic structures based on micropolar continuum models. Compos. Struct. 170, 271-290 (2017)
[20] Eliseev, V., Vetyukov, Y.: Effects of deformation in the dynamics of belt drive. Acta Mech. 223(8), 1657-1667 (2012) · Zbl 1401.74161
[21] Eliseev, V.V.: Constitutive equations for elastic prismatic bars. Mech. Solids 24, 66-71 (1989)
[22] Eliseev, V.V.: Mechanics of Elastic Bodies. Politekhnical University, St. Petersburg (1996). (in Russian)
[23] Eremeyev, VA; Pietraszkiewicz, W. (ed.); Witkowski, W. (ed.), On characterization of an elastic network within six-parameter shell theory, No. 4, 89-92 (2018), London
[24] Eremeyev, VA; Altenbach, H.; Altenbach, H. (ed.); Eremeyev, VA (ed.), Basics of mechanics of micropolar shells, 63-111 (2017), Cham
[25] Eremeyev, V.A., Cloud, M.J., Lebedev, L.P.: Applications of Tensor Analysis in Continuum Mechanics. World Scientific, London (2018) · Zbl 1471.74001
[26] Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer-Briefs in Applied Sciences and Technologies. Springer, Heidelberg (2013) · Zbl 1257.74002
[27] Eremeyev, V.A., Pietraszkiewicz, W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85(2), 125-152 (2006) · Zbl 1105.74019
[28] Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 49(14), 1993-2005 (2012)
[29] Ericksen, J.L., Truesdell, C.: Exact tbeory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1(1), 295-323 (1958) · Zbl 0081.39303
[30] Eringen, A.C.: Microcontinuum Field Theory. I. Foundations and Solids. Springer, New York (1999) · Zbl 0953.74002
[31] Eugster, S., dell’Isola, F., Steigmann, D.: Continuum theory for mechanical metamaterials with a cubic lattice substructure. Math. Mech. Complex Syst. 7(1), 75-98 (2019) · Zbl 1428.74004
[32] Fleck, N.A., Deshpande, V.S., Ashby, M.F.: Micro-architectured materials: past, present and future. Proc. R. Soc. A Math. Phys. Eng. Sci. 466(2121), 2495-2516 (2010)
[33] Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge Solid State Science Series, 2nd edn. Cambridge University Press, Cambridge (1997) · Zbl 0723.73004
[34] Giorgio, I., dell’Isola, F., Steigmann, D.J.: Axisymmetric deformations of a 2nd grade elastic cylinder. Mech. Res. Commun. 94, 45-48 (2018)
[35] Goda, I., Assidi, M., Belouettar, S., Ganghoffer, J.F.: A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater. 16, 87-108 (2012)
[36] Graefe, R., Gappoev, M., Pertschi, O.: Vladimir G. Šuchov 1853-1939: die Kunst der Sparsamen Konstruktion. Deutsche Verlags-Anstalt, Stuttgart (1990)
[37] Greco, L., Cuomo, M.: B-spline interpolation of Kirchhoff-Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251-269 (2013) · Zbl 1352.74153
[38] Green, A.E., Laws, N.: A general theory of rods. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 293(1433), 145-155 (1966)
[39] Green, A.E., Naghdi, P.M., Wenner, M.L.: On the theory of rods. II. Developments by direct approach. Int. J. Solids Struct. 337(1611), 485-507 (1974) · Zbl 0327.73044
[40] Hans, S., Boutin, C.: Dynamics of discrete framed structures: a unified homogenized description. J. Mech. Mater. Struct. 3(9), 1709-1739 (2008)
[41] Hodges, D.H.: Nonlinear Composite Beam Theory, Progress in Astronautics and Aeronautics, vol. 213. American Institute of Aeronautics and Astronautics, Reston (2006)
[42] Hütter, G.: Homogenization of a Cauchy continuum towards a micromorphic continuum. J. Mech. Phys. Solids 99, 394-408 (2017)
[43] Ieşan, D.: Classical and Generalized Models of Elastic Rods. CRC Press, Boca Raton (2009) · Zbl 1177.74001
[44] Kafadar, C.B.: On the nonlinear theory of rods. Int. J. Eng. Sci. 10(4), 369-391 (1972) · Zbl 0243.73023
[45] Kleiber, M., Wożniak, C.: Nonlinear Mechanics of Structures. Kluwer, Dordrecht (1991) · Zbl 0744.73002
[46] Lakes, R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22(1), 55-63 (1986)
[47] Lebedev, L.P., Cloud, M.J., Eremeyev, V.A.: Tensor Analysis with Applications in Mechanics. World Scientific, London (2010) · Zbl 1232.53001
[48] Lee, J., Kim, J., Hyeon, T.: Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18(16), 2073-2094 (2006)
[49] Libai, A., Simmonds, J.G.: Nonlinear elastic shell theory. Adv. Appl. Mech. 23, 271-371 (1983) · Zbl 0575.73079
[50] Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells, 2nd edn. Cambridge University Press, Cambridge (1998) · Zbl 0918.73003
[51] Librescu, L., Song, O.: Thin-Walled Composite Beams: Theory and Application, Solid Mechanics and Its Applications, vol. 131. Springer, Dordrecht (2006) · Zbl 1107.74002
[52] Lurie, A.I.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990) · Zbl 0715.73017
[53] Mills, N.: Polymer Foams Handbook. Engineering and Biomechanics Applications and Design Guide. Butterworth-Heinemann, Amsterdam (2007)
[54] Miśkiewicz, M.: Structural response of existing spatial truss roof construction based on Cosserat rod theory. Continuum Mech. Thermodyn. 31(1), 79-99 (2019)
[55] Noor, A.K., Nemeth, M.P.: Analysis of spatial beamlike lattices with rigid joints. Comput. Methods Appl. Mech. Eng. 24(1), 35-59 (1980) · Zbl 0448.73076
[56] Noor, A.K., Nemeth, M.P.: Micropolar beam models for lattice grids with rigid joints. Comput. Methods Appl. Mech. Eng. 21(2), 249-263 (1980) · Zbl 0425.73006
[57] Phani, A.S., Hussein, M.I.: Dynamics of Lattice Materials. Wiley, Chichester (2017)
[58] Pietraszkiewicz, W.: The resultant linear six-field theory of elastic shells: what it brings to the classical linear shell models? ZAMM 96(8), 899-915 (2016) · Zbl 07775078
[59] Pietraszkiewicz, W., Eremeyev, V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3-4), 774-787 (2009) · Zbl 1215.74004
[60] Pietraszkiewicz, W., Konopińska, V.: Junctions in shell structures: a review. Thin Walled Struct. 95, 310-334 (2015)
[61] Pipkin, A.C.: Some developments in the theory of inextensible networks. Quart. Appl. Math. 38(3), 343-355 (1980) · Zbl 0484.73009
[62] Pipkin, A.C.: Equilibrium of Tchebychev nets. Arch. Ration. Mech. Anal. 85(1), 81-97 (1984) · Zbl 0556.73046
[63] Pipkin, AC; Spencer, AJM (ed.), Network theory, 267-284 (1984), New York · Zbl 0599.70019
[64] Pshenichnov, G.I.: A Theory of Latticed Plates and Shells. World Scientific, Singapore (1993) · Zbl 0791.73002
[65] Rahali, Y., Giorgio, I., Ganghoffer, J.F., dell’Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148-172 (2015) · Zbl 1423.74794
[66] Rivlin, RS; Barenblatt, GI (ed.); Joseph, DD (ed.), Networks of inextensible cords, No. 1, 566-579 (1997), New York
[67] Rubin, M.B.: Cosserat Theories: Shells, Rods and Points. Kluwer, Dordrecht (2000) · Zbl 0984.74003
[68] Rueger, Z., Lakes, R.S.: Experimental Cosserat elasticity in open-cell polymer foam. Philos. Mag. 96(2), 93-111 (2016)
[69] Rueger, Z., Lakes, R.S.: Strong Cosserat elasticity in a transversely isotropic polymer lattice. Phys. Rev. Lett. 120(6), 065501 (2018)
[70] Shirani, M., Luo, C., Steigmann, D.J.: Cosserat elasticity of lattice shells with kinematically independent flexure and twist. Continuum Mech. Thermodyn. 31(4), 1087-1097 (2019)
[71] Simmonds, J.G.: A Brief on Tensor Analysis, 2nd edn. Springer, New York (1994) · Zbl 0790.53014
[72] Soleimani Dorcheh, A., Abbasi, M.: Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 199(1), 10-26 (2008)
[73] Steigmann, D.J.: Continuum theory for elastic sheets formed by inextensible crossed elasticae. Int. J. Non-Linear Mech. 106, 324-329 (2018)
[74] Steigmann, D.J.: Equilibrium of elastic lattice shells. J. Eng. Math. 109(1), 47-61 (2018) · Zbl 1408.74035
[75] Steigmann, D.J., dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech. Sin. 31(3), 373-382 (2015) · Zbl 1346.74128
[76] Steigmann, D.J., Pipkin, A.C.: Equilibrium of elastic nets. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 335(1639), 419-454 (1991) · Zbl 0734.73098
[77] Svetlitsky, V.A.: Statics of Rods. Springer, Berlin (2000) · Zbl 0967.74002
[78] Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics, 3rd edn. Springer, Berlin (2004) · Zbl 1068.74002
[79] Turco, E.: Discrete is it enough? The revival of Piola-Hencky keynotes to analyze three-dimensional elastica. Continuum Mech. Thermodyn. 30(5), 1039-1057 (2018) · Zbl 1396.74008
[80] Valanis, K.C., Landel, R.F.: The strain-energy function of a hyperelastic material in terms of the extension ratios. J. Appl. Phys. 38(7), 2997-3002 (1967)
[81] Vetyukov, Y.: Nonlinear Mechanics of Thin-Walled Structures: Asymptotics, Direct Approach and Numerical Analysis. Springer, Vienna (2014) · Zbl 1349.74006
[82] Vetyukov, Y.: Non-material finite element modelling of large vibrations of axially moving strings and beams. J. Sound Vibr. 414, 299-317 (2018)
[83] Vetyukov, Y., Oborin, E., Scheidl, J., Krommer, M., Schmidrathner, C.: Flexible belt hanging on two pulleys: contact problem at non-material kinematic description. Int. J. Solids Struct. 168, 183-193 (2019)
[84] Wilson, E.B.: Vector Analysis. Founded Upon the Lectures of G. W. Gibbs. Yale University Press, New Haven (1901)
[85] Witkowski, W.: 4-node combined shell element with semi-EAS-ANS strain interpolations in 6-parameter shell theories with drilling degrees of freedom. Comput. Mech. 43, 307-319 (2009) · Zbl 1162.74479
[86] Wożniak, C.: Lattice Surface Structures. PWN, Warsaw (1970). (in Polish)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.