×

Soft-impact dynamics of deformable bodies. (English) Zbl 1343.74037

Summary: Systems constituted by impacting beams and rods of non-negligible mass are often encountered in many applications of engineering practice. The impact between two rigid bodies is an intrinsically indeterminate problem due to the arbitrariness of the velocities after the instantaneous impact and implicates an infinite value of the contact force. The arbitrariness of after-impact velocities is solved by releasing the impenetrability condition as an internal constraint of the bodies and by allowing for elastic deformations at contact during an impact of finite duration. In this paper, the latter goal is achieved by interposing a concentrate spring between a beam and a rod at their contact point, simulating the deformability of impacting bodies at the interaction zones. A reliable and convenient method for determining impact forces is also presented. An example of engineering interest is carried out: a flexible beam that impacts on an axially deformable strut. The solution of motion under a harmonic excitation of the beam built-in base is found in terms of transverse and axial displacements of the beam and rod, respectively, by superimposition of a finite number of modal contributions. Numerical investigations are performed in order to examine the influence of the rigidity of the contact spring and of the ratio between the first natural frequencies of the beam and the rod, respectively, on the system response, namely impact velocity, maximum displacement, spring stretching and contact force. Impact velocity diagrams, nonlinear resonance curves and phase portraits are presented to determine regions of periodic motion with impacts and the appearance of chaotic solutions, and parameter ranges where the functionality of the non-structural element is at risk.

MSC:

74M20 Impact in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Abdul Azeez M.F., Vakakis A.F.: Numerical and experimental analysis of a continuous overhung rotor undergoing vibro-impacts. Int. J. Non-linear Mech. 34(3), 415–435 (1999) · Zbl 1342.74002 · doi:10.1016/S0020-7462(98)00022-5
[2] Aidanpaa J.O, Gupta R.B.: Periodic and chaotic behaviour of a threshold-limited two-degree-of-freedom system. J. Sound Vib. 165, 305–307 (1993) · Zbl 0925.70283 · doi:10.1006/jsvi.1993.1259
[3] Alibert J.-J., Seppecher P., dell’isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003) · Zbl 1039.74028 · doi:10.1177/1081286503008001658
[4] Andreaus U., Dell’isola F., Porfiri M.: Piezoelectric passive distributed controllers for beam flexural vibrations. JVC J. Vib. Control 10(5), 625–659 (2004) · Zbl 1078.74026 · doi:10.1177/1077546304038224
[5] Andreaus U., Placidi L., Rega G.: Numerical simulation of the soft contact dynamics of an impacting bilinear oscillator. Commun. Nonlinear Sci. Numer. Simul. 15, 2603–2616 (2010) · Zbl 1222.70020 · doi:10.1016/j.cnsns.2009.10.015
[6] Andreaus U., Placidi L., Rega G.: Soft impact dynamics of a cantilever beam: equivalent SDOF model versus infinite-dimensional system. J. Mech. Eng. Sci. 225(10), 2444–2456 (2011) · doi:10.1177/0954406211414484
[7] Babitsky, V.I.: Theory of Vibro-Impact Systems and Applications. Springer, Berlin (Revised Translation from Russian, Moscow, Nauka) (1978) · Zbl 1041.70001
[8] Balachandran B.: Dynamics of an elastic structure excited by harmonic and aharmonic impactor motions. J. Vib. Control 9, 265–279 (2003) · Zbl 1156.74300 · doi:10.1177/107754603030752
[9] Bishop, S.R., Thompson, M.G., Foale, S.: Prediction of period-1 impact in a driven beam. Proc. R. Soc. Lond. A 452(1954), 2579–2592 (1996)
[10] Blazejczyk-Okolewska B., Kapitaniak T.: Co-existing attractors of impact oscillator. Chaos Solitons Fractals 9, 1439–1443 (1998) · Zbl 0942.37040 · doi:10.1016/S0960-0779(98)00164-7
[11] Blazejczyk-Okolewska B., Czolczynski K., Kapitaniak T.: Dynamics of a two-degree-of-freedom cantilever beam with impacts. Chaos Solitons Fractals 40(4), 1991–2006 (2009) · Zbl 1198.74038 · doi:10.1016/j.chaos.2007.09.097
[12] Brach R.: Mechanical Impact Dynamics: Rigid Body Collisions. Wiley, New York (1991)
[13] Carcaterra A., Ciappi E.: Prediction of the compressible stage slamming force on rigid and elastic system impacting over the water surface. Nonlinear Dyn. 21(2), 193–220 (2000) · Zbl 0991.74027 · doi:10.1023/A:1008338301185
[14] Carcaterra A., Ciappi E., Iafrati A., Campana E.F.: Shock Spectral analysis of elastic systems impacting on the water surface. J. Sound Vib. 229(3), 579–605 (2000) · doi:10.1006/jsvi.1999.2517
[15] Czołczyński K., Kapitaniak T.: Influence of the mass and stiffness ratio on a periodic motion of two impacting oscillators. Chaos Solitons Fractals 17, 1–10 (2003) · Zbl 1098.70529 · doi:10.1016/S0960-0779(02)00444-7
[16] Czołczyński K., Kapitaniak T.: On the existence of a stable periodic solution of two impacting oscillators with damping. Int. J. Bifurcat. Chaos 14, 3931–3947 (2004) · Zbl 1140.70469 · doi:10.1142/S0218127404011715
[17] Czołczyński K., Kapitaniak T.: On the influence of the resonant frequencies ratio on stable periodic solutions of two impacting oscillators. Int. J. Bifurcat. Chaos 16, 3707–3715 (2006) · Zbl 1126.34026 · doi:10.1142/S0218127406017105
[18] de los Santos M.A., Cardona S., Sanchez-Reyes J.: A global simulation model for hermetic reciprocating compressor. ASME J. Vib. Acoust. 113(3), 395–400 (1991) · doi:10.1115/1.2930197
[19] de Souza S.L.T., Caldas I.L., Viana R.L., Balthazar J.M., Brasil R.M.L.R.F.: Basins of attraction changes by amplitude constraining of oscillators with limited power supply. Chaos Solitons Fractals 26, 1211–1220 (2005) · Zbl 1093.37516 · doi:10.1016/j.chaos.2005.02.039
[20] dell’Isola F., Batra R.C.: Saint-Venant’s problem for porous linear elastic materials. J. Elast. 47(1), 73–81 (1997) · Zbl 0891.73011 · doi:10.1023/A:1007478322647
[21] dell’Isola F., Guarascio M., Hutter K.: A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi’s effective stress principle. Arch. Appl. Mech. 70(5), 323–337 (2000) · Zbl 0981.74016 · doi:10.1007/s004199900020
[22] dell’Isola F., Kosinski W.: Deduction of thermodynamic balance laws for bidimensional nonmaterial directed continua modelling interphase layers. Arch. Mech. 45, 333–359 (1993)
[23] dell’Isola F., Madeo A., Placidi L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. Z. Angew. Math. Mech. 92(1), 52–71 (2012) · Zbl 1247.74031 · doi:10.1002/zamm.201100022
[24] dell’Isola F., Madeo A., Seppecher P., Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. Int. J. Solids Struct. 46(17), 3150–3164 (2009) · Zbl 1167.74393 · doi:10.1016/j.ijsolstr.2009.04.008
[25] dell’Isola F., Romano A.: On a general balance law for continua with an interface. Ricerche Mat. 35, 325–337 (1986) · Zbl 0629.76004
[26] dell’Isola F., Romano A.: On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface. Int. J. Eng. Sci. 25, 1459–1468 (1987) · Zbl 0624.73001 · doi:10.1016/0020-7225(87)90023-1
[27] dell’Isola F., Seppecher P.: Edge contact forces and quasi-balanced power. Meccanica 32, 33–52 (1997) · Zbl 0877.73055 · doi:10.1023/A:1004214032721
[28] dell’Isola F., Seppecher P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. Comptes Rendus de lAcademie de Sciences Serie IIb: Mecanique, Physique, Chimie, Astronomie 321, 303–308 (1995) · Zbl 0844.73006
[29] dell’Isola F., Vidoli S.: Continuum modelling of piezoelectromechanical truss beams: an application to vibration damping. Arch. Appl. Mech. 68(1), 1–19 (1998) · Zbl 0908.73067 · doi:10.1007/s004190050142
[30] dell’Isola F., Vidoli S.: Damping of bending waves in truss beams by electrical transmission lines with PZT actuators. Arch. Appl. Mech. 68, 626–636 (1998) · Zbl 0920.73111 · doi:10.1007/s004190050192
[31] Dick A.J., Balachandran B., Yabuno H., Numatsu M., Hayashi K., Kuroda M., Ashida K.: Utilizing nonlinear phenomena to locate grazing in the constrained motion of a cantilever beam. Nonlinear Dyn. 57, 335–349 (2009) · Zbl 1176.74084 · doi:10.1007/s11071-008-9445-0
[32] Di Egidio A., Luongo A., Vestroni F.: A non-linear model for the dynamics of open cross-section thin-walled beams–Part I: formulation. Int. J. Non-Linear Mech. 38(7), 1067–1081 (2003) · Zbl 1348.74191 · doi:10.1016/S0020-7462(02)00053-7
[33] Di Egidio A., Luongo A., Vestroni F.: A non-linear model for the dynamics of open cross-section thin-walled beams–Part II: forced motion. Int. J. Non-Linear Mech. 38(7), 1083–1094 (2003) · Zbl 1348.74192 · doi:10.1016/S0020-7462(02)00054-9
[34] Fathi A., Popplewell N.: Improved approximations for a beam impacting a stop. J. Sound Vib. 170(3), 365–375 (1994) · Zbl 0925.73115 · doi:10.1006/jsvi.1994.1068
[35] Fegelman K.J.L., Grosh K.: Dynamics of a flexible beam contacting a linear spring at low frequency excitation: experiment and analysis. ASME J. Vib. Acoust. 124(2), 237–249 (2002) · doi:10.1115/1.1426073
[36] Goldsmith W.: Impact. The Theory and Physical Behaviour of Colliding Solids. Dover, New York (1960) · Zbl 0122.42501
[37] Iafrati A., Carcaterra A., Ciappi A., Campana E.F.: Hydroelastic analysis of a simple oscillator impacting the free surface. J. Ship Res. 44(4), 278–289 (2000)
[38] Jerrelind J., Stensson A.: Non-linear dynamics of parts in engineering systems. Chaos Solitons Fractals 11, 2413–2428 (2000) · Zbl 0955.70510 · doi:10.1016/S0960-0779(00)00016-3
[39] Knudsen J., Massih A.R.: Vibro-impact dynamics of a periodically forced beam. ASME J. Press. Vessel Technol. 122(2), 210–221 (2000) · doi:10.1115/1.556175
[40] Lee K.: Dynamic contact analysis for the valvetrain dynamics of an internal combustion engine by finite element techniques. Proc. Inst. Mech. Eng. D J. Automobile Eng. 218(3), 353–358 (2004) · doi:10.1177/095440700421800301
[41] Leine R.I., van Campen D.H., Keultjes W.J.G.: Stick-slip whirl interaction in drillstring dynamics. ASME J. Vibr. Acoust. 124(2), 209–220 (2002) · doi:10.1115/1.1452745
[42] Lin J.-H., Weng C.-C.: Probability analysis of seismic pounding of adjacent buildings. Earthquake Eng. Struct. Dyn. 30(10), 1539–1557 (2001) · doi:10.1002/eqe.78
[43] Luongo A.: Mode localization in dynamics and buckling of linear imperfect continuous structures. Nonlinear Dyn. 25(1–3), 133–156 (2001) · Zbl 1021.74017 · doi:10.1023/A:1012954700751
[44] Luongo A., Di Egidio A.: Divergence, Hopf and double-zero bifurcations of a nonlinear planar beam. Comput. Struct. 84(24–25), 1596–1605 (2006) · doi:10.1016/j.compstruc.2006.01.004
[45] Luongo A., Di Egidio A., Paolone A.: On the proper form of the amplitude modulation equations for resonant systems. Nonlinear Dyn. 27(3), 237–254 (2002) · Zbl 1047.70042 · doi:10.1023/A:1014450221087
[46] Luongo A., Paolone A.: Multiple scale analysis for divergence-hopf bifurcation of imperfect symmetric systems. J. Sound Vib. 218(3), 527–539 (1998) · Zbl 1235.34129 · doi:10.1006/jsvi.1998.1840
[47] Luongo A., Paolone A., Di Egidio A.: Multiple timescales analysis for 1:2 and 1:3 Resonant Hopf bifurcations. Nonlinear Dyn. 34(3–4), 269–291 (2003) · Zbl 1041.70019 · doi:10.1023/B:NODY.0000013508.50435.39
[48] Luongo A., Paolone A., Piccardo G.: Postcritical behavior of cables undergoing two simultaneous galloping modes. Meccanica 33(3), 229–242 (1998) · Zbl 0959.74024 · doi:10.1023/A:1004343029604
[49] Luongo A., Piccardo G.: Linear instability mechanisms for coupled translational galloping. J. Sound Vib. 288(4–5), 1027–1047 (2005) · doi:10.1016/j.jsv.2005.01.056
[50] Luongo A., Romeo F.: Real wave vectors for dynamic analysis of periodic structures. J. Sound Vib. 279(1–2), 309–325 (2005) · doi:10.1016/j.jsv.2003.11.011
[51] Maragakis E.A., Jennings P.C.: Analytical modals for the rigid body motions of skew bridges. Earthquake Eng. Struct. Dyn. 15(8), 923–944 (1987) · doi:10.1002/eqe.4290150802
[52] Maurini C., dell’Isola F., Del Vescovo D.: Comparison of piezoelectronic networks acting as distributed vibration absorbers. Mech. Syst. Signal Process. 18, 1243–1271 (2004) · doi:10.1016/S0888-3270(03)00082-7
[53] Maurini C., Pouget J., dell’Isola F.: Extension of the Euler-Bernoulli model of piezoelectric laminates to include 3D effects via a mixed approach. Comput. Struct. 84(22–23), 1438–1458 (2006) · doi:10.1016/j.compstruc.2006.01.016
[54] Maurini C., Pouget J.F., dell’Isola F.: On a model of layered piezoelectric beams including transverse stress effect. Int. J. Solids Struct. 41, 4473–4502 (2004) · Zbl 1079.74569 · doi:10.1016/j.ijsolstr.2004.03.002
[55] Oppenheimer C.H., Dubowsky S.: A methodology for predicting impact-induced acoustic noise in machine systems. J. Sound Vib. 266(5), 1025–1051 (2003) · doi:10.1016/S0022-460X(02)01450-5
[56] Paolone A., Vasta M., Luongo A.: Flexural-torsional bifurcations of a cantilever beam under potential and circulatory forces I: non-linear model and stability analysis. Int. J. Non-Linear Mech. 41(4), 586–594 (2006) · doi:10.1016/j.ijnonlinmec.2006.02.006
[57] Peterka F.: Bifurcations and transition phenomena in an impact oscillator. Chaos Solitons Fractals 7, 1635–1647 (1996) · Zbl 1080.34527 · doi:10.1016/S0960-0779(96)00028-8
[58] Placidi L., dellIsola F., Ianiro N., Sciarra G.: Variational formulation of pre-stressed solid fluid mixture theory, with an application to wave phenomena. Eur. J. Mech. A/Solids 27, 582–606 (2008) · Zbl 1146.74012 · doi:10.1016/j.euromechsol.2007.10.003
[59] Porfiri M., dellIsola F., Frattale Mascioli F.M.: Circuit analog of a beam and its application to multimodal vibration damping, using piezoelectric transducers. Int. J. Circuit Theory Appl. 32, 167–198 (2004) · Zbl 1050.94550 · doi:10.1002/cta.273
[60] Porfiri M., dellIsola F., Santini E.: Modeling and design of passive electric networks interconnecting piezoelectric transducers for distributed vibration control. Int. J. Appl. Electromagnet. Mech. 21, 69–87 (2005)
[61] Quiligotti S., Maugin G.A., Dell’Isola F.: An Eshelbian approach to the nonlinear mechanics of constrained solid-fluid mixtures. Acta Mech. 160(1–2), 45–60 (2003) · Zbl 1064.74061 · doi:10.1007/s00707-002-0968-z
[62] Romeo F., Luongo A.: Vibration reduction in piecewise bi-coupled periodic structures. J. Sound Vib. 268(3), 601–615 (2003) · doi:10.1016/S0022-460X(03)00375-4
[63] Romeo F., Luongo A.: Invariant representation of propagation properties for bi-coupled periodic structures. J. Sound Vib. 257(5), 869–886 (2002) · doi:10.1006/jsvi.2002.5065
[64] Sciarra G., dell’Isola F., Hutter K.: A solid-fluid mixture model allowing for solid dilatation under external pressure. Continuum Mech. Thermodyn. 13(5), 287–306 (2001) · Zbl 1134.74365 · doi:10.1007/s001610100053
[65] van de Vorst E.L.B., van Campen D.H., de Kraker A., Fey R.H.B.: Periodic solutions of a multi-DOF beam system with impact. J. Sound Vib. 192, 913–925 (1996) · Zbl 1232.74078 · doi:10.1006/jsvi.1996.0225
[66] Wagg D.J., Bishop S.R.: Application of non-smooth modelling techniques to the dynamics of a flexible impacting beam. J. Sound Vib. 256(5), 803–820 (2002) · doi:10.1006/jsvi.2002.5020
[67] Wang C., Kim J.: New analysis method for a thin beam impacting against a stop based on the full continuous model. J. Sound Vib. 191(5), 809–823 (1996) · doi:10.1006/jsvi.1996.0157
[68] Wang C., Kim J.: The dynamic analysis of a thin beam impacting against a stop of general three-dimensional geometry. J. Sound Vib. 203(2), 237–249 (1997) · doi:10.1006/jsvi.1996.0875
[69] Wu T.X., Thompson D.J.: The effects of track non-linearity on wheel/rail impact. Proc. Inst. Mech. Eng. F J. Rail Rapid Trans. 218(1), 1–15 (2004) · doi:10.1243/095440904322804394
[70] Yin X.C., Qin Y., Zou H.: Transient responses of repeated impact of a beam against a stop. Int. J. Solids Struct. 44, 7323–7339 (2007) · Zbl 1166.74399 · doi:10.1016/j.ijsolstr.2007.04.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.