×

Utilizing nonlinear phenomena to locate grazing in the constrained motion of a cantilever beam. (English) Zbl 1176.74084

Summary: Grazing behavior in soft impact dynamics of a harmonically based excited flexible cantilever beam is investigated. Numerical and experimental methods are employed to study the dynamic behavior of macro- and micro-scale cantilever beam-impactor systems. For off-resonance excitation at two and a half times the fundamental frequency, the response of the oscillating cantilever experiences period doubling as the separation distance or clearance between the beam axis and the contact surface is decreased. The nonlinear phenomenon is studied by using phase portraits, Poincaré sections, and spectral analysis. Motivated by atomic force microscopy, this general dynamic behavior is studied as a means to locating the separation distance corresponding to grazing where the contact force is minimized.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74M20 Impact in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74-05 Experimental work for problems pertaining to mechanics of deformable solids

Software:

AUTO-86
Full Text: DOI

References:

[1] Shaw, S.W., Holmes, P.J.: A periodically forced piecewise linear oscillator. J. Sound Vib. 90(1), 129–155 (1983) · Zbl 0561.70022 · doi:10.1016/0022-460X(83)90407-8
[2] Virgin, L.N., Begley, C.J.: Grazing bifurcations and basins of attraction in an impact-friction oscillator. Physica D 130, 43–57 (1999) · Zbl 0964.70019 · doi:10.1016/S0167-2789(99)00016-0
[3] Emans, J., Wiercigroch, M., Krivtsov, A.M.: Cumulative effect of structural nonlinearities: chaotic dynamics of cantilever beam systems with impacts. Chaos Solitons Fractals 23, 1661–1670 (2005) · Zbl 1135.70314
[4] Lin, W., Qiao, N., Yuying, H.: Bifurcations and chaos in a forced cantilever system with impacts. J. Sound Vib. 296(4–5), 1068–1078 (2006) · doi:10.1016/j.jsv.2006.03.015
[5] de Souza, S.L.T., Wiercigroch, M., Caldas, I.L., Balthazar, J.M.: Suppressing grazing chaos in impacting system by structural nonlinearity. Chaos Solitons Fractals 38, 864–869 (2008) · doi:10.1016/j.chaos.2007.01.022
[6] Wiercigroch, M., Sin, V.W.T.: Experimental study of a symmetrical piecewise base-excited oscillator. J. Appl. Mech. 65, 657–663 (1998) · doi:10.1115/1.2789108
[7] Peterka, F., Vacik, J.: Transition to chaotic motion in mechanical systems with impacts. J. Sound Vib. 154(1), 95–115 (1992) · Zbl 0925.70280 · doi:10.1016/0022-460X(92)90406-N
[8] Wiercigroch, M.: Bifurcation analysis of harmonically excited linear oscillator with clearance. Chaos Solitons Fractals 4(2), 297–303 (1994) · Zbl 0794.70011 · doi:10.1016/0960-0779(94)90153-8
[9] Stensson, A., Nordmark, A.B.: Experimental investigation of some consequences of low velocity impacts in the chaotic dynamics of a mechanical system. Philos. Trans. R. Soc. Lond. 347, 439–448 (1994) · doi:10.1098/rsta.1994.0053
[10] de Weger, J., Binks, D., van de Water, W., Molenaar, J.: The universal behavior of oscillators that undergo low velocity impacts. In: Proceedings of the International Conference on Control of Oscillations and Chaos, pp. 166–167. St. Petersburg, Russia, August 27–29, 1997 · Zbl 0900.70265
[11] Long, X.-H., Balachandran, B.: Elastic structure excited by harmonic impactor motions: experimental and numerical investigations. In: Proceedings of Fifth EuroMech Nonlinear Dynamics Conference, No. 17–156, pp. 1–8, August 7–12, 2005
[12] Dankowicz, H., Zhao, X.: Local analysis of co-dimension-one and co-dimension-two grazing bifurcations in impact microactuators. Physica D 202, 238–257 (2005) · Zbl 1083.34032 · doi:10.1016/j.physd.2005.02.008
[13] Murphy, K.D., Morrison, T.M.: Grazing instabilities and post-bifurcation behavior in an impacting string. J. Acoust. Soc. Am. 111(2), 884–892 (2002) · doi:10.1121/1.1433806
[14] Hunt, J.P., Sarid, D.: Kinetics of lossy grazing impact oscillators. Appl. Phys. Lett. 72(23), 2969–2971 (1998) · doi:10.1063/1.121510
[15] Dankowicz, H.: Nonlinear dynamics as an essential tool for non-destructive characterization of soft nanostructures using tapping-mode atomic force microscopy. Philos. Trans. R. Soc. 364, 3505–3520 (2006) · Zbl 1152.74314 · doi:10.1098/rsta.2006.1907
[16] de Weger, J., van de Water, W., Molenaar, J.: Grazing impact oscillations. Phys. Rev. E 62(2), 2030–2041 (2000) · doi:10.1103/PhysRevE.62.2030
[17] Molenaar, J., de Weger, J., van de Water, W.: Mapping of grazing-impact oscillators. Nonlinearity 14, 301–321 (2001) · Zbl 0991.34035 · doi:10.1088/0951-7715/14/2/307
[18] Zhao, X., Dankowicz, H.: Control of impact microactuators for precise positioning. J. Comput. Nonlinear Dyn. 1, 65–70 (2006) · doi:10.1115/1.1951781
[19] Choi, N., Uchihashi, T., Nishijima, H., Ishida, T., Mizutani, W., Akita, S., Nakayama, Y., Ishikawa, M., Tokumoto, H.: Atomic force microscopy of single walled carbon nanotubes using carbon nanotube tip. Jpn. J. Appl. Phys. 39(6B), 3707–3710 (2000) · doi:10.1143/JJAP.39.3707
[20] Solares, S.D., Matsuda, Y., Goddard, W.A. III: Influence of the carbon nanotube probe tilt angle on the effective probe stiffness and image quality in tapping-mode atomic force microscopy. J. Phys. Chem. 109(35), 16658–16664 (2005)
[21] Anderson, T.J., Nayfeh, A.H., Balachandran, B.: Experimental verification of the importance of the nonlinear curvature in a response of a cantilever beam. J. Vib. Acoust. 118, 21–27 (1996) · doi:10.1115/1.2889630
[22] Peterka, F.: Bifurcations and transition phenomena in an impact oscillator. Chaos Solitons Fractals 7(10), 1635–1647 (1996) · Zbl 1080.34527 · doi:10.1016/S0960-0779(96)00028-8
[23] Pishkenari, H.N., Jalili, N., Alasty, A., Meghdari, A.: Nonlinear dynamic analysis and chaotic behavior in atomic force microscopy. In: Proceedings of the ASME IDETC/CIE, Long Beach, CA, September 24–28, 2005
[24] Balachandran, B., Nayfeh, A.H.: Nonlinear motions of beam-mass structure. Nonlinear Dyn. 1, 39–61 (1990) · doi:10.1007/BF01857584
[25] Balachandran, B.: Dynamics of an elastic structure excited by harmonic and aharmonic impactor motions. J. Vib. Control 9(3–4), 265–279 (2003) · Zbl 1156.74300 · doi:10.1177/107754603030752
[26] Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, New York (1995) · Zbl 0848.34001
[27] Doedel, E., Kern’evez, J.: Auto: Software for continuation problems in ordinary differential equations. Technical report, California Institute of Technology, Pasadena, CA (1986)
[28] Numatsu, M., Yabuno, H., Dick, A.J., Kuroda, M., Ashida, K., Balachandran, B.: Control of impact cantilever to keep constant magnitude of a specific frequency component. In: Proceedings of 2007 ASME IDETC/CIE, Las Vegas, NV, September 4–7, 2007 · Zbl 1176.74084
[29] Dick, A.J., Solares, S.: Utilizing period-doubling bifurcations to locate grazing in atomic force microscopy. In: Proceedings of 6th EuroMech Nonlinear Dynamics Conference, St. Petersburg, Russia, June 30–July 4, 2008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.