×

Model subspaces techniques to study Fourier expansions in \(L^2\) spaces associated to singular measures. (English) Zbl 1471.42007

Let \(\{f_n\}_{n\geq0}\) be a sequence in a separable Hilbert space \(H\) . This sequence \(\{f_n\}\) is called Parseval frame for \(H\) when \[ ||f||_H=\sum_{n\geq0}|<f,f_n>_H|^2 \] for every \(f\in H\). Also \(\{\phi\}_{n\geq0}\), a complete sequence of unit vector in \(H\), is called effective, if when it is defined that \[ \xi_0=<\xi,\phi_0>\] \[\xi_n=\xi_{n-1}+<\xi-\xi_{n-1},\phi_n>\phi_n\ \ \ (n=1,2,\dots)\]
for every \(\xi\in H\), \[ \lim_{n\rightarrow\infty}||\xi-\xi_n||=0. \] Now let \(\mu\) be a Borel measure in the torus \(\mathcal{T}\) that is singular with respect to the Lebesgue measure. The aim of this paper is to study of Fourier representation for \(L^2\) spaces of singular measure by using the theory of model subspaces of the Hardy space \(\mathcal{H}^2\), whose idea already appears in the references [R. Haller and R. Szwarc, Stud. Math. 169, No. 2, 123–132 (2005; Zbl 1102.41031); J. E. Herr et al., J. Anal. Math. 138, No. 1, 209–234 (2019; Zbl 1428.30044); S. V. Khrushchev et al., Lect. Notes Math. 864, 214–335 (1981; Zbl 0466.46018)], etc. The authors study the Parseval frame associate to the effective sequence of monomials \(\{z^n\}_{n\geq0}\) in \(L^2(\mathcal{T},\mu)\), and characterize the Paseval frame as the boundary values of the Parseval frame obtained by projecting the monomials onto a convenient model space. Moreover, they show the related some results.

MSC:

42A16 Fourier coefficients, Fourier series of functions with special properties, special Fourier series
42C15 General harmonic expansions, frames
30H10 Hardy spaces

References:

[1] Aleksandrov, A. B., Invariant subspaces of the shift operator. Axiomatic approach, J. Math. Sci., 22, 1695-1708 (1983) · Zbl 0517.47019
[2] Aleksandrov, A. B., On the existence of angular boundary values of pseudocontinuable functions, Zap. Nauč. Semin. POMI. Zap. Nauč. Semin. POMI, J. Math. Sci., 87, 3781-3787 (1997), translation in · Zbl 0909.30026
[3] Aleksandrov, A. B., Isometric embeddings of coinvariant subspaces of the shift operator, J. Math. Sci., 92, 3543-3549 (1998) · Zbl 0907.30037
[4] Cima, J.; Matheson, A.; Ross, W., The Cauchy Transform, Mathematical Surveys and Monographs Volumen, vol. 125, 179-208 (2006), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1096.30046
[5] Clark, D. N., One dimensional perturbations of restricted shifts, J. Anal. Math., 25, 169-191 (1972) · Zbl 0252.47010
[6] Dai, X.-R., Spectra of Cantor measures, Math. Ann., 366, 3-4, 1621-1647 (2016) · Zbl 1352.42009
[7] Dai, X.-R.; He, X.-G.; Lai, C.-K., Spectral property of Cantor measures with consecutive digits, Adv. Math., 242, 187-208 (2013) · Zbl 1277.28009
[8] Duffin, R.; Schaeffer, A., A class of non-harmonic Fourier series, Trans. Am. Math. Soc., 72, 341-366 (1952) · Zbl 0049.32401
[9] Dutkay, D. E.; Jorgensen, Palle E. T., Affine fractals as boundaries and their harmonic analysis, Proc. Am. Math. Soc., 139, 3291-3305 (2011) · Zbl 1230.47045
[10] Dutkay, D. E.; Lai, C.-K., Uniformity of measures with Fourier frames, Adv. Math., 252, 684-707 (2014) · Zbl 1369.28008
[11] Dutkay, D. E.; Han, D.; Sun, Q., On the spectra of a Cantor measure, Adv. Math., 221, 251-276 (2009) · Zbl 1173.28003
[12] Dutkay, D. E.; Lai, C.-K.; Wang, Y., Fourier bases and Fourier frames on self-affine measures (2016), preprint
[13] Haller, R.; Szwarc, R., Kaczmarz algorithm in Hilbert space, Stud. Math., 169, 2, 123-132 (2005) · Zbl 1102.41031
[14] He, X.-G.; Lai, C.-K.; Lau, K.-S., Exponential spectra in \(L^2(\mu)\), Appl. Comput. Harmon. Anal., 34, 3, 327-338 (2013) · Zbl 1264.42010
[15] Herr, J. E.; Weber, E. S., Fourier series for singular measures, Axioms, 6, 2, 7 (2017) · Zbl 1422.42009
[16] Herr, J. E.; Jorgensen, P. E.T.; Weber, E. S., Positive matrices in the Hardy space with prescribed boundary representations via the Kaczmarz algorithm, J. Anal. Math., 138, 209-234 (2019) · Zbl 1428.30044
[17] Hruschev, S. V.; Nikolskii, N. K.; Pavlov, B. S., Unconditional bases of exponentials and of reproducing kernels, (Lecture Notes in Math., vol. 864 (1981), Springer: Springer Berlin-New York), 214-335, Complex analysis and spectral theory (Leningrad, 1979/1980) pp. 214-335 (in Russian). English translation · Zbl 0466.46018
[18] Jorgensen, P. E.T.; Pedersen, S., Dense analytic subspaces in fractal L2-spaces, J. Anal. Math., 75, 185-228 (1998) · Zbl 0959.28008
[19] Kaczmarz, S., Approximate solution of systems of linear equations, Bull. Int. Acad. Plonaise Sci. Lett., Cl. Sci. Math. Nat., Sér. A, Sci. Math.. Bull. Int. Acad. Plonaise Sci. Lett., Cl. Sci. Math. Nat., Sér. A, Sci. Math., Int. J. Control, 57, 1269-1271 (1993), (in German). English translation in · Zbl 0817.65025
[20] Kwapień, S.; Mycielski, J., On the Kaczmarz algorithm of approximation in infinite-dimensional spaces, Stud. Math., 148, 1, 75-86 (2001) · Zbl 0987.41020
[21] Laba, I.; Wang, Y., Some properties of spectral measures, Appl. Comput. Harmon. Anal., 20, 1, 149-157 (2006) · Zbl 1096.42017
[22] Lai, C.-K., On Fourier frame of absolutely continuous measures, J. Funct. Anal., 261, 10, 2877-2889 (2011) · Zbl 1228.42033
[23] Marcus, A. W.; Spielman, D. A.; Srivastava, N., Interlacing families II: mixed characteristic polynomials and the Kadison-Singer problem, Ann. Math. (2), 182, 1, 327-350 (2015) · Zbl 1332.46056
[24] Nikolski, N., Operators, Functions, and Systems: An Easy Reading. Vol. 1. Hardy, Hankel, and Toeplitz, Mathematical Surveys and Monographs, vol. 92 (2002), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1007.47001
[25] Nikolski, N., Operators, Functions, and Systems: An Easy Reading. Vol. 2. Model Operators and Systems, Mathematical Surveys and Monographs, vol. 93 (2002), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1007.47002
[26] Nitzan, S.; Olevskii, A.; Ulanovskii, A., Exponential frames on unbounded sets, Proc. Am. Math. Soc., 144, 1, 109-118 (2016) · Zbl 1327.42035
[27] Poltoratkii, A. G., The boundary behavior of pseudocontinuable functions, Algebra Anal.. Algebra Anal., St. Petersburg Math. J., 5, 2, 389-406 (1994), (in Russian). English translation in · Zbl 0833.30018
[28] Rudin, W., Real and Complex Analysis (1987), McGraw-Hil: McGraw-Hil New York · Zbl 0925.00005
[29] Saksman, E., An Elementary Introduction to Clark Measures. Topics in Complex Analysis and Operator Theory, 85-136 (2007), Univ. Málaga: Univ. Málaga Málaga · Zbl 1148.47001
[30] Sarason, D., Sub-Hardy Hilbert Spaces in the Unit Disk, University of Arkansas Lecture Notes in the Mathematical Sciences, vol. 10 (1994), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York · Zbl 1253.30002
[31] Stephenson, K., Isometries in the Nevanlinna class, Indiana Univ. Math. J., 26, 307-324 (1977) · Zbl 0326.30025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.