×

Logarithmic Gromov-Witten theory and double ramification cycles. (English) Zbl 07829698

The paper is about log Gromov-Witten theory of a toric variety relative to its toric boundary. Log Gromov-Witten theory, developed by Abramovich-Chen and Gross-Siebert is a generalization of Gromov-Witten theory, which concerns counts of stable log maps, which in brief terms are stable maps satisfying given tangency conditions relative to a (not necessarily smooth) divisor in the target.
Gromov-Witten cycles are cycles in the Chow ring of the Deligne-Mumford moduli space of stable curves \(\overline{\mathcal{M}}_{g,n}\), obtained by pushing-forward cycles on moduli spaces of stable maps defined in terms of the virtual fundamental class. Log Gromov-Witten cycles are defined analogously, considering moduli spaces of stable log maps.
The main result of the paper shows that log Gromov-Witten cycles of a toric variety are contained in the tautological ring of \(\overline{\mathcal{M}}_{g,n}\), which is a natural subring of the Chow ring that is closed under natural operations, such as push-forwards and pull-backs along the inclusion of the boundary strata of \(\overline{\mathcal{M}}_{g,n}\). To show this, the authors express log Gromov-Witten cycles in terms of log toric contact cycles, which are generalizations of the double ramification cycle. The proof also systematically uses the logarithmic Chow ring of \(\overline{\mathcal{M}}_{g,n}\), defined as a limit of Chow rings of blow-ups of \(\overline{\mathcal{M}}_{g,n}\).

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
14J33 Mirror symmetry (algebro-geometric aspects)
14A21 Logarithmic algebraic geometry, log schemes

Software:

admcycles

References:

[1] M. Abouzaid, M. McLean and I. Smith, Complex cobordism, Hamiltonian loops and global Kuranishi charts, preprint (2021), https://arxiv.org/abs/2110.14320.
[2] D. Abramovich, L. Caporaso and S. Payne, The tropicalization of the moduli space of curves, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 4, 765-809. · Zbl 1410.14049
[3] D. Abramovich and Q. Chen, Stable logarithmic maps to Deligne-Faltings pairs II, Asian J. Math. 18 (2014), no. 3, 465-488. · Zbl 1321.14025
[4] D. Abramovich, Q. Chen, M. Gross and B. Siebert, Decomposition of degenerate Gromov-Witten invariants, Compos. Math. 156 (2020), no. 10, 2020-2075. · Zbl 1476.14093
[5] D. Abramovich, Q. Chen, S. Marcus, M. Ulirsch and J. Wise, Skeletons and fans of logarithmic structures, Nonarchimedean and tropical geometry, Simons Symp., Springer, Cham (2016), 287-336. · Zbl 1364.14047
[6] D. Abramovich, Q. Chen, S. Marcus and J. Wise, Boundedness of the space of stable logarithmic maps, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 9, 2783-2809. · Zbl 1453.14081
[7] D. Abramovich and K. Karu, Weak semistable reduction in characteristic 0, Invent. Math. 139 (2000), no. 2, 241-273. · Zbl 0958.14006
[8] D. Abramovich and J. Wise, Birational invariance in logarithmic Gromov-Witten theory, Compos. Math. 154 (2018), no. 3, 595-620. · Zbl 1420.14124
[9] H. Argüz, P. Bousseau, R. Pandharipande and D. Zvonkine, Gromov-Witten theory of complete intersections via nodal invariants, J. Topol. 16 (2023), no. 1, 264-343. · Zbl 1525.14068
[10] L. Battistella, N. Nabijou and D. Ranganathan, Gromov-Witten theory via roots and logarithms, preprint (2022), https://arxiv.org/abs/2203.17224.
[11] P. Bousseau, Tropical refined curve counting from higher genera and lambda classes, Invent. Math. 215 (2019), no. 1, 1-79. · Zbl 07015696
[12] M. Brion, Equivariant Chow groups for torus actions, Transform. Groups 2 (1997), no. 3, 225-267. · Zbl 0916.14003
[13] F. Carocci and N. Nabijou, Rubber tori in the boundary of expanded stable maps, preprint (2021), https://arxiv.org/abs/2109.07512.
[14] R. Cavalieri, M. Chan, M. Ulirsch and J. Wise, A moduli stack of tropical curves, Forum Math. Sigma 8 (2020), Paper No. e23. · Zbl 1444.14005
[15] R. Cavalieri, P. Johnson, H. Markwig and D. Ranganathan, Counting curves on Hirzebruch surfaces: Tropical geometry and the Fock space, Math. Proc. Cambridge Philos. Soc. 171 (2021), no. 1, 165-205. · Zbl 1477.14088
[16] R. Cavalieri, H. Markwig and D. Ranganathan, Tropical compactification and the Gromov-Witten theory of \mathbb{P}^1, Selecta Math. (N. S.) 23 (2017), no. 2, 1027-1060. · Zbl 1391.14111
[17] R. Cavalieri, H. Markwig and D. Ranganathan, Pluricanonical cycles and tropical covers, preprint (2022), https://arxiv.org/abs/2206.14034.
[18] Q. Chen, Stable logarithmic maps to Deligne-Faltings pairs I, Ann. of Math. (2) 180 (2014), no. 2, 455-521. · Zbl 1311.14028
[19] Q. Chen and M. Satriano, Chow quotients of toric varieties as moduli of stable log maps, Algebra Number Theory 7 (2013), no. 9, 2313-2329. · Zbl 1301.14012
[20] V. Delecroix, J. Schmitt and J. van Zelm, admcycles—a Sage package for calculations in the tautological ring of the moduli space of stable curves, J. Softw. Algebra Geom. 11 (2021), no. 1, 89-112. · Zbl 1485.14046
[21] C. Faber and R. Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS) 7 (2005), no. 1, 13-49. · Zbl 1084.14054
[22] W. Fulton, Intersection Theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin 1998. · Zbl 0885.14002
[23] A. Gathmann, M. Kerber and H. Markwig, Tropical fans and the moduli spaces of tropical curves, Compos. Math. 145 (2009), no. 1, 173-195. · Zbl 1169.51021
[24] T. Graber, Torus localization for logarithmic stable maps, Logarithmic enumerative geoimetry and mirror symmetry, Oberwolfach Rep. 27, European Mathematical Society, Zürich (2019), 1672.
[25] T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999), no. 2, 487-518. · Zbl 0953.14035
[26] T. Graber and R. Vakil, Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J. 130 (2005), no. 1, 1-37. · Zbl 1088.14007
[27] A. Gross, Correspondence theorems via tropicalizations of moduli spaces, Commun. Contemp. Math. 18 (2016), no. 3, Article ID 1550043. · Zbl 1387.14152
[28] A. Gross, Intersection theory on tropicalizations of toroidal embeddings, Proc. Lond. Math. Soc. (3) 116 (2018), no. 6, 1365-1405. · Zbl 1420.14142
[29] M. Gross and B. Siebert, Logarithmic Gromov-Witten invariants, J. Amer. Math. Soc. 26 (2013), no. 2, 451-510. · Zbl 1281.14044
[30] L. Herr, The log product formula, Algebra Number Theory 17 (2023), no. 7, 1281-1323. · Zbl 1525.14003
[31] L. Herr, S. Molcho, R. Pandharipande and J. Wise, Birational models of logarithmic Gromov-Witten theory, in preparation, 2023.
[32] D. Holmes, Extending the double ramification cycle by resolving the Abel-Jacobi map, J. Inst. Math. Jussieu 20 (2021), no. 1, 331-359. · Zbl 1462.14031
[33] D. Holmes, S. Molcho, R. Pandharipande, A. Pixton and J. Schmitt, Logarithmic double ramification cycles, preprint (2022), https://arxiv.org/abs/2207.06778.
[34] D. Holmes, A. Pixton and J. Schmitt, Multiplicativity of the double ramification cycle, Doc. Math. 24 (2019), 545-562. · Zbl 1419.14036
[35] D. Holmes and R. Schwarz, Logarithmic intersections of double ramification cycles, Algebr. Geom. 9 (2022), no. 5, 574-605. · Zbl 1508.14003
[36] F. Janda, Gromov-Witten theory of target curves and the tautological ring, Michigan Math. J. 66 (2017), no. 4, 683-698. · Zbl 1388.14150
[37] F. Janda, R. Pandharipande, A. Pixton and D. Zvonkine, Double ramification cycles on the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017), 221-266. · Zbl 1370.14029
[38] M. M. Kapranov, B. Sturmfels and A. V. Zelevinsky, Quotients of toric varieties, Math. Ann. 290 (1991), no. 4, 643-655. · Zbl 0762.14023
[39] P. Kennedy-Hunt, Q. Shafi and A. U. K. Kumaran, Tropical refined curve counting with descendants, preprint (2023), https://arxiv.org/abs/2307.09436.
[40] M. Levine and R. Pandharipande, Algebraic cobordism revisited, Invent. Math. 176 (2009), no. 1, 63-130. · Zbl 1210.14025
[41] T. Mandel and H. Ruddat, Descendant log Gromov-Witten invariants for toric varieties and tropical curves, Trans. Amer. Math. Soc. 373 (2020), no. 2, 1109-1152. · Zbl 1442.14166
[42] S. Marcus and J. Wise, Logarithmic compactification of the Abel-Jacobi section, Proc. Lond. Math. Soc. (3) 121 (2020), no. 5, 1207-1250. · Zbl 1455.14021
[43] D. Maulik and R. Pandharipande, A topological view of Gromov-Witten theory, Topology 45 (2006), no. 5, 887-918. · Zbl 1112.14065
[44] G. Mikhalkin, Enumerative tropical algebraic geometry in \mathbb{R}^2, J. Amer. Math. Soc. 18 (2005), no. 2, 313-377. · Zbl 1092.14068
[45] S. Molcho, Universal stacky semistable reduction, Israel J. Math. 242 (2021), no. 1, 55-82. · Zbl 1467.14005
[46] S. Molcho, R. Pandharipande and J. Schmitt, The Hodge bundle, the universal 0-section, and the log Chow ring of the moduli space of curves, Compos. Math. 159 (2023), no. 2, 306-354. · Zbl 1523.14055
[47] S. Molcho and D. Ranganathan, A case study of intersections on blowups of the moduli of curves, preprint (2021), https://arxiv.org/abs/2106.15194.
[48] S. Molcho and J. Wise, The logarithmic Picard group and its tropicalization, Compos. Math. 158 (2022), no. 7, 1477-1562. · Zbl 1502.14008
[49] T. Nishinou and B. Siebert, Toric degenerations of toric varieties and tropical curves, Duke Math. J. 135 (2006), no. 1, 1-51. · Zbl 1105.14073
[50] R. Pandharipande, A. Pixton and D. Zvonkine, Relations on \mathcal{M}_{g,n} via 3-spin structures, J. Amer. Math. Soc. 28 (2015), no. 1, 279-309. · Zbl 1315.14037
[51] B. Parker, Three dimensional tropical correspondence formula, Comm. Math. Phys. 353 (2017), no. 2, 791-819. · Zbl 1401.14239
[52] D. Ranganathan, Toric Severi degrees are logarithmic Gromov-Witten invariants, preprint (2015).
[53] D. Ranganathan, Skeletons of stable maps I: Rational curves in toric varieties, J. Lond. Math. Soc. (2) 95 (2017), no. 3, 804-832. · Zbl 1401.14130
[54] D. Ranganathan, Skeletons of stable maps II: Superabundant geometries, Res. Math. Sci. 4 (2017), Paper No. 11. · Zbl 1401.14131
[55] D. Ranganathan, A note on the cycle of curves in a product of pairs, preprint (2019), https://arxiv.org/abs/1910.00239.
[56] D. Ranganathan, Logarithmic Gromov-Witten theory with expansions, Algebr. Geom. 9 (2022), no. 6, 714-761. · Zbl 1509.14111
[57] D. Ranganathan, K. Santos-Parker and J. Wise, Moduli of stable maps in genus one and logarithmic geometry, II, Algebra Number Theory 13 (2019), no. 8, 1765-1805. · Zbl 1473.14106
[58] D. Ranganathan and J. Usatine, Gromov-Witten theory and invariants of matroids, Selecta Math. (N. S.) 28 (2022), no. 4, Paper No. 69. · Zbl 1505.14116
[59] D. Ranganathan and J. Wise, Rational curves in the logarithmic multiplicative group, Proc. Amer. Math. Soc. 148 (2020), no. 1, 103-110. · Zbl 1441.14095
[60] B. Siebert, Virtual fundamental classes, global normal cones and Fulton’s canonical classes, Frobenius manifolds, Aspects Math. E36, Friedrich Vieweg, Wiesbaden (2004), 341-358. · Zbl 1083.14066
[61] R. P. Thomas, A K-theoretic Fulton class, Facets of algebraic geometry. Vol. II, London Math. Soc. Lecture Note Ser. 473, Cambridge University, Cambridge (2022), 367-379. · Zbl 1489.14012
[62] J. Wise, Obstruction theories and virtual fundamental classes, preprint (2011), https://arxiv.org/abs/1111.4200.
[63] Y. Wu, Splitting of Gromov-Witten invariants with toric gluing strata, preprint (2021), https://arxiv.org/abs/2103.14780.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.