×

Double ramification cycles on the moduli spaces of curves. (English) Zbl 1370.14029

A double ramification cycle DR\(_g(\mu, \nu)\) on the moduli space of curves parameterizes curves of genus \(g\) that admit a map to \(\mathbb P^1\) with specified ramification profile \(\mu\) over \(0\) and \(\nu\) over \(\infty\). The study of the cycle class of DR\(_g(\mu, \nu)\) is a classical topic, dating back to a question of Eliashberg in 2001. Hain first calculated the cycle class of DR\(_g(\mu, \nu)\) in the locus of curves of compact type [R. Hain, in: Handbook of moduli. Volume I. Somerville, MA: International Press; Beijing: Higher Education Press. 527–578 (2015; Zbl 1322.14049)], see also [S. Grushevsky and D. Zakharov, Proc. Am. Math. Soc. 142, No. 12, 4053–4064 (2014; Zbl 1327.14132); Duke Math. J. 163, No. 5, 953–982 (2014; Zbl 1302.14039); R. Cavalieri et al., J. Pure Appl. Algebra 216, No. 4, 950–981 (2012; Zbl 1273.14053)] for alternate calculations. In this remarkable paper the authors calculate the cycle class of DR\(_g(\mu, \nu)\) on the moduli space of Deligne-Mumford stable curves, which verifies a previous conjectural formula of Pixton and completely answers Eliashberg’s question. We remark that here DR\(_g(\mu, \nu)\) is defined via the virtual fundamental class of the moduli space of stable maps to rubber, and the resulting formula expresses the class of DR\(_g(\mu, \nu)\) as a sum over stable graphs. As applications, some Hodge integral calculations on the Deligne-Mumford moduli space are deduced from the formula.

MSC:

14H10 Families, moduli of curves (algebraic)
14C25 Algebraic cycles

References:

[1] D. Abramovich, T. Graber and A. Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Am. J. Math., 130 (2008), 1337-1398. · Zbl 1193.14070 · doi:10.1353/ajm.0.0017
[2] J. Bryan and R. Pandharipande, The local Gromov-Witten theory of curves, J. Am. Math. Soc., 21 (2008), 101-136. · Zbl 1126.14062 · doi:10.1090/S0894-0347-06-00545-5
[3] A. Buryak, S. Shadrin, L. Spitz and D. Zvonkine, Integrals of ψ \(\psi \)-classes over double ramification cycles, Am. J. Math., 137 (2015), 699-737. · Zbl 1342.14054 · doi:10.1353/ajm.2015.0022
[4] R. Cavalieri, S. Marcus and J. Wise, Polynomial families of tautological classes on Mg,nrt \({\mathcal{M}}_{g,n}^{\mathsf{rt}} \), J. Pure Appl. Algebra, 216 (2012), 950-981. · Zbl 1273.14053 · doi:10.1016/j.jpaa.2011.10.037
[5] A. Chiodo, Stable twisted curves and their r \(r\)-spin structures, Ann. Inst. Fourier, 58 (2008), 1635-1689. · Zbl 1179.14028 · doi:10.5802/aif.2394
[6] A. Chiodo, Towards an enumerative geometry of the moduli space of twisted curves and rth roots, Compos. Math., 144 (2008), 1461-1496. · Zbl 1166.14018 · doi:10.1112/S0010437X08003709
[7] A. Chiodo and D. Zvonkine, Twisted Gromov-Witten r \(r\)-spin potential and Givental’s quantization, Adv. Theor. Math. Phys., 13 (2009), 1335-1369. · Zbl 1204.81099 · doi:10.4310/ATMP.2009.v13.n5.a3
[8] E. Clader and F. Janda, Pixton’s double ramification cycle relations, arXiv:1601.02871. · Zbl 1387.14079
[9] Faber, C., A conjectural description of the tautological ring of the moduli space of curves, No. E33, 109-129 (1999), Braunschweig · Zbl 0978.14029 · doi:10.1007/978-3-322-90172-9_6
[10] C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math., 139 (2000), 173-199. · Zbl 0960.14031 · doi:10.1007/s002229900028
[11] C. Faber and R. Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc., 7 (2005), 13-49. · Zbl 1084.14054 · doi:10.4171/JEMS/20
[12] Faber, C.; Pandharipande, R., Tautological and non-tautological cohomology of the moduli space of curves, No. 24, 293-330 (2013), Somerville · Zbl 1322.14046
[13] G. Farkas and R. Pandharipande, The moduli space of twisted canonical divisors, with Appendix by F. Janda, R. Pandharipande, A. Pixton, and D. Zvonkine, J. Inst. Math. Jussieu (2017, to appear), doi:10.1017/S1474748016000128, arXiv:1508.07940. · Zbl 1370.14029
[14] E. Getzler and R. Pandharipande, Virasoro constraints and the Chern classes of the Hodge bundle, Nucl. Phys. B, 530 (1998), 701-714. · Zbl 0957.14038 · doi:10.1016/S0550-3213(98)00517-3
[15] T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math., 135 (1999), 487-518. · Zbl 0953.14035 · doi:10.1007/s002220050293
[16] T. Graber and R. Pandharipande, Constructions of nontautological classes on moduli spaces of curves, Mich. Math. J., 51 (2003), 93-109. · Zbl 1079.14511 · doi:10.1307/mmj/1049832895
[17] T. Graber and R. Vakil, Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J., 130 (2005), 1-37. · Zbl 1088.14007 · doi:10.1215/S0012-7094-05-13011-3
[18] S. Grushevsky and D. Zakharov, The double ramification cycle and the theta divisor, Proc. Am. Math. Soc., 142 (2014), 4053-4064. · Zbl 1327.14132 · doi:10.1090/S0002-9939-2014-12153-8
[19] Hain, R., Normal functions and the geometry of moduli spaces of curves, No. 24, 527-578 (2013), Somerville · Zbl 1322.14049
[20] Heller, I.; Tompkins, C.; Kuhn, H. (ed.); Tucker, A. (ed.), An extension of a theorem of Dantzig’s, No. 38, 247-254 (1956), Princeton · Zbl 0072.37804
[21] F. Janda, Relations on M‾g,n \(\overline{\mathcal{M}}_{g,n}\) via equivariant Gromov-Witten theory of \(P1\mathbf{P}^1\), Alg. Geom., (2017, to appear), arXiv:1509.08421. · Zbl 1386.14103
[22] F. Janda, R. Pandharipande, A. Pixton and D. Zvonkine, in preparation. · Zbl 0953.14035
[23] T. J. Jarvis, Geometry of the moduli of higher spin curves, Int. J. Math., 11 (2000), 637-663. · Zbl 1094.14504
[24] P. Johnson, R. Pandharipande and H.-H. Tseng, Abelian Hurwitz-Hodge integrals, Mich. Math. J., 60 (2011), 171-198, arXiv:0803.0499. · Zbl 1222.14119 · doi:10.1307/mmj/1301586310
[25] J. Li, A degeneration formula of GW invariants, J. Differ. Geom., 60 (2002), 199-293. · Zbl 1063.14069 · doi:10.4310/jdg/1090351102
[26] J. Li, Lecture notes on relative GW-invariants, http://users.ictp.it/ pub_off/lectures/lns019/Jun_Li/Jun_Li.pdf. · Zbl 1092.14067
[27] S. Marcus and J. Wise, Stable maps to rational curves and the relative Jacobian, arXiv:1310.5981. · Zbl 1179.14028
[28] Mumford, D.; Artin, M. (ed.); Tate, J. (ed.), Towards an enumerative geometry of the moduli space of curves, 271-328 (1983), Basel · Zbl 0554.14008 · doi:10.1007/978-1-4757-9286-7_12
[29] A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz numbers, and completed cycles, Ann. Math., 163 (2006), 517-560. · Zbl 1105.14076 · doi:10.4007/annals.2006.163.517
[30] A. Okounkov and R. Pandharipande, Quantum cohomology of the Hilbert scheme of points of the plane, Invent. Math., 179 (2010), 523-557. · Zbl 1198.14054 · doi:10.1007/s00222-009-0223-5
[31] R. Pandharipande and A. Pixton, Relations in the tautological ring of the moduli space of curves, arXiv:1301.4561. · Zbl 1376.14059
[32] R. Pandharipande, A. Pixton and D. Zvonkine, Relations on M‾g,n \(\overline{\mathcal{M}}_{g,n}\) via 3-spin structures, J. Am. Math. Soc., 28 (2015), 279-309. · Zbl 1315.14037 · doi:10.1090/S0894-0347-2014-00808-0
[33] A. Pixton, Conjectural relations in the tautological ring of M‾g,n \(\overline{\mathcal{M}}_{g,n} \), arXiv:1207.1918. · Zbl 1198.14054
[34] A. Pixton, Double ramification cycles and tautological relations on M‾g,n \(\overline{\mathcal{M}}_{g,n} \), available from the author. · Zbl 1193.14070
[35] A. Pixton, On combinatorial properties of the explicit expression for double ramification cycles, in preparation. · Zbl 1342.14054
[36] B. Riemann, Theorie der Abel’schen Functionen, J. Reine Angew. Math., 54 (1857), 115-155. · ERAM 054.1427cj · doi:10.1515/crll.1857.54.115
[37] R. Stanley, Enumerative Combinatorics: Vol I, Cambridge University Press, Cambridge, 1999. · Zbl 0608.05001 · doi:10.1017/CBO9780511609589
[38] Geer, G., Cycles on the moduli space of abelian varieties, No. E33, 65-89 (1999), Braunschweig · Zbl 0974.14031 · doi:10.1007/978-3-322-90172-9_4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.