×

On global hyperbolicity of spacetimes: some recent advances and open problems. (English) Zbl 1503.53130

Parasidis, Ioannis. N. (ed.) et al., Mathematical analysis in interdisciplinary research. Cham: Springer. Springer Optim. Appl. 179, 281-295 (2021).
Summary: This chapter is an up-to-date account of results on globally hyperbolic spacetimes and serves as a multitool; we start the exposition of results from a foundational level, where the main tools are order-theory and general topology, we continue with results of a more geometric nature, and we finally reach results that are connected to the most recent advances in theoretical physics. In each case, we list a number of open questions and we finally introduce a conjecture, on sliced spaces.
For the entire collection see [Zbl 1483.00042].

MSC:

53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
53C22 Geodesics in global differential geometry
53-02 Research exposition (monographs, survey articles) pertaining to differential geometry
53Z05 Applications of differential geometry to physics
83C99 General relativity
54H99 Connections of general topology with other structures, applications

References:

[1] R. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, Journal of functional analysis; Vol. 52; PP. 48-79; 1983 · Zbl 0515.58037
[2] W. Al-Qallaf, K. Papadopoulos, On a Duality between Time and Space Cones, Kuwait Journal of Science, Vol. 47 No. 2, 2020. · Zbl 1463.83002
[3] C. Bär, N. Ginoux, F. Pfäffle, Wave Equations on Lorentzian Manifolds and Quantization, ESI lectures in mathematics and physics, European Mathematical Society, 2007. · Zbl 1118.58016
[4] Clarke, CJS, On the geodesic completeness of causal space-times, Proc. Camb. Phil. Soc., 69, 319 (1970) · Zbl 0208.24602 · doi:10.1017/S0305004100046715
[5] Cotsakis, S., Global hyperbolicity of sliced spaces, Gen. Rel. Grav., 36, 1183-1188 (2004) · Zbl 1059.83003 · doi:10.1023/B:GERG.0000018284.43552.2f
[6] Derezinski, J.; Siemssen, D., An evolution equation approach to the Klein-Gordon operator on curved spacetime, Pure and Applied Analysis, 2, 215-261 (2019) · Zbl 1423.58016 · doi:10.2140/paa.2019.1.215
[7] L. H. Ford, Quantum field theory in curved space-time, Particles and fields. Proceedings, 9th Jorge Andre Swieca Summer School, Campos do Jordao, Brazil, February 16-28, 1997, 1997, pp. 345-388. · Zbl 0970.53048
[8] Galloway, GJ, Curvature, causality and completeness in space-times with causally complete spacelike slices, Math. Proc. Camb. Phil. Soc., 99, 367 (1986) · Zbl 0612.53039 · doi:10.1017/S0305004100064288
[9] Galloway, GJ, Some connections between global hyperbolicity and geodesic completeness, Journal of Geometry and Physics, 6, 1, 127-141 (1989) · Zbl 0677.53071 · doi:10.1016/0393-0440(89)90004-1
[10] Gobel, R., Zeeman Topologies on Space-Times of General Relativity Theory, Comm. Math. Phys., 46, 289-307 (1976) · Zbl 0324.57002 · doi:10.1007/BF01609125
[11] Gordon, W., An Analytical Criterion for the Completeness of Riemannian Manifolds, Proc. Amer. Math. Soc., 37, 221-221 (1973) · Zbl 0228.53032 · doi:10.1090/S0002-9939-1973-0307112-5
[12] Hawking, SW; Ellis, GFR, The Large Scale Structure of Space-Time (1973), : Cambridge University Press · Zbl 0265.53054 · doi:10.1017/CBO9780511524646
[13] S.W. Hawking, A.R. King, P. J. and McCarthy, A new topology for curved space-time which incorporates the causal, differential, and conformal structures. Journal of Mathematical Physics, 17 (2). pp. 174-181, 1976. · Zbl 0319.54005
[14] S. Hawking, W. Israel, General Relativity: an Einstein Centenary Survey, 2010. · Zbl 0424.53001
[15] Hollands, S.; Wald, R., Quantum fields in curved spacetime, Phys. Rept., 574, 1-35 (2015) · Zbl 1357.81144 · doi:10.1016/j.physrep.2015.02.001
[16] E. Hounnonkpe, E. Minguzzi, Globally hyperbolic spacetimes can be defined without the ‘causal’ condition, Classical and Quantum Gravity, Vol. 36, No 19, 2019. · Zbl 1478.83068
[17] Ishibashi, A.; Wald, R., Dynamics in non-globally-hyperbolic static spacetimes: II. General analysis of prescriptions for dynamics, Classical and Quantum Gravity, 20, 16, 3815-3826 (2003) · Zbl 1045.83014 · doi:10.1088/0264-9381/20/16/318
[18] Kay, B. S., Linear Spin 0 Quantum Fields in External Gravitational and Scalar Fields. 1. A One Particle Structure for the Stationary Case, Commun. Math. Phys., 62, 55-70 (1978) · doi:10.1007/BF01940330
[19] Kay, B. S.; Wald, R. M., Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Space-Times with a Bifurcate Killing Horizon, Phys. Rept., 207, 49-136 (1991) · Zbl 0861.53074 · doi:10.1016/0370-1573(91)90015-E
[20] B. S. Kay, The Principle of locality and quantum field theory on (nonglobally hyperbolic) curved space-times, Rev. Math. Phys. 4 (1992), no. spec01 167-195. · Zbl 0779.53052
[21] B. S. Kay, Quantum field theory in curved spacetime, Encyclopedia of Mathematical Physics, Françoise, J.P. and Naber, G.L. and Tsou, S.T. 4 (2006) 202-214.
[22] Kurt, N.; Papadopoulos, K., On Completeness of Sliced Spaces under the Alexandrov Topology, Mathematics, 8, 99 (2020) · doi:10.3390/math8010099
[23] Low, RJ, Spaces of paths and the path topology, Journal of Mathematical Physics, 57 (2016) · Zbl 1350.83005 · doi:10.1063/1.4963144
[24] Low, R.J., Spaces of Causal Paths and Naked Singularities, Class. Quantum, Grav., Vol. 7, No. 6, 1990. · Zbl 0699.53087
[25] Mac Lane, S., Categories for the Working Mathematician (1971), : Springer · Zbl 0232.18001 · doi:10.1007/978-1-4612-9839-7
[26] Martin, K.; Panangaden, P., A Domain of Spacetime Intervals in General Relativity, Commun. Math. Phys., 267, 563-586 (2006) · Zbl 1188.83071 · doi:10.1007/s00220-006-0066-5
[27] K. Martin, P. Panangaden, Spacetime topology from causality, arXiv:gr-qc/0407093.
[28] E. Minguzzi, M. Śanchez, The causal hierarchy of spacetimes, in Recent developments in pseudo-Riemannian geometry, ed. by H. Baum and D. Alekseevsky, Zurich, ESI Lect. Math. Phys., EMS Pub. House, p. 299-358, 2006. · Zbl 1148.83002
[29] Nicolas, J-P, A nonlinear Klein-Gordon equation on Kerr metrics, Journal de Mathématiques Pures et Appliquées, 81, 9, 885-914 (2002) · Zbl 1029.83029 · doi:10.1016/S0021-7824(02)01272-2
[30] K. Nomizu, H. Ozeki, The existence of complete Riemannian metrics, 1961. · Zbl 0102.16401
[31] A. Much, R. Oeckl, Self-adjointness in Klein-Gordon theory on globally hyperbolic spacetimes, Mathematical Physics, Analysis and Geometry 24, Springer, PP.5; 2021 · Zbl 1462.81098
[32] Kyriakos Papadopoulos, Nazli Kurt, Basil K. Papadopoulos, On Sliced Spaces; Global Hyperbolicity Revisited Symmetry, 11(3), 304, 2019. · Zbl 1423.83011
[33] Papadopoulos, K., Papadopoulos, B.K., Space-time Singularities vs. Topologies in the Zeeman—Göbel Class, Gravit. Cosmol. 25, 116121, 2019. · Zbl 1426.83025
[34] Kyriakos Papadopoulos, Natural vs. Artificial Topologies on a Relativistic Spacetime, Chapter in Nonlinear Analysis and Global Optimization, eds Th. M. Rassias and P.M. Pardalos, Springer, accepted and to appear in 2020. · Zbl 1472.83078
[35] R. Penrose, Techniques of Differential Topology in Relativity, CBMS-NSF Regional Conference Series in Applied Mathematics, 1972. · Zbl 0321.53001
[36] P. Petersen, Manifold Theory, 2010.
[37] Scott, D., Outline of a mathematical theory of computation, Technical Monograph PRG-2 (1970), November: Oxford University Computing Laboratory, November
[38] Seggev, I., Dynamics in stationary, non-globally hyperbolic spacetimes, Classical and Quantum Gravity, 21, 11, 2651-2668 (2004) · Zbl 1057.83005 · doi:10.1088/0264-9381/21/11/010
[39] Shubin, M., Essential self-adjointness for semi-bounded magnetic Schrödinger operators on non-compact manifolds, J. Funct. Anal., 186, 1, 92-116 (2001) · Zbl 0997.58021 · doi:10.1006/jfan.2001.3778
[40] R. Verch, J. Tolksdorf, Quantum physics, fields and closed timelike curves: The D-CTC condition in quantum field theory, arXiv:1609.01496 [math-ph], Commun. Math. Phys. 357 (2018) 319-351 · Zbl 1391.81140
[41] Wald, R. M., Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (1994), Chicago Lectures in Physics: University of Chicago Press, Chicago Lectures in Physics · Zbl 0842.53052
[42] Wald, R. M., Dynamics in nonglobally hyperbolic, static space-times, J. Math. Phys, 21, 2802-2805 (1980) · doi:10.1063/1.524403
[43] Zeeman, EC, Causality implies the Lorentz group, J. Math. Phys., 5, 490-493 (1964) · Zbl 0133.23205 · doi:10.1063/1.1704140
[44] Zeeman, EC, The Topology of Minkowski Space, Topology, Vol., 6, 161-170 (1967) · Zbl 0149.41204
[45] Felix Finster and Albert Much and Robert Oeckl, Stationary spacetimes and self-adjointness in Klein-Gordon theory, Journal of Geometry and Physics; Vol. 148; PP. 103561; 2020 · Zbl 1434.53025
[46] A. N. Bernal, M. Sanchez, On Smooth Cauchy hypersurfaces and Geroch’s splitting theorem, Commun. Math. Phys. 243 (2003) 461-470, gr-qc/0306108. · Zbl 1085.53060
[47] Bernal, A. N.; Sánchez, M., Smoothness of Time Functions and the Metric Splitting of Globally Hyperbolic Spacetimes, Commun. Math. Phys., 257, 1, 43-50 (2005) · Zbl 1081.53059 · doi:10.1007/s00220-005-1346-1
[48] Grigor’yan, A., Heat Kernel and Analysis on Manifolds, AMS/IP Studies in Advanced Mathematics 47 (2009), : American Mathematical Society · Zbl 1206.58008
[49] Geroch, R., Domain of Dependence, J. Math. Phys., 11, 2, 437-449 (1970) · Zbl 0189.27602 · doi:10.1063/1.1665157
[50] Beem, J. K.; Ehrlich, P.; Easley, K., Global Lorentzian Geometry (1996), : CRC Press · Zbl 0846.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.