×

Algorithms for solving high dimensional PDEs: from nonlinear Monte Carlo to machine learning. (English) Zbl 1490.60202

Summary: In recent years, tremendous progress has been made on numerical algorithms for solving partial differential equations (PDEs) in a very high dimension, using ideas from either nonlinear (multilevel) Monte Carlo or deep learning. They are potentially free of the curse of dimensionality for many different applications and have been proven to be so in the case of some nonlinear Monte Carlo methods for nonlinear parabolic PDEs. In this paper, we review these numerical and theoretical advances. In addition to algorithms based on stochastic reformulations of the original problem, such as the multilevel Picard iteration and the deep backward stochastic differential equations method, we also discuss algorithms based on the more traditional Ritz, Galerkin, and least square formulations. We hope to demonstrate to the reader that studying PDEs as well as control and variational problems in very high dimensions might very well be among the most promising new directions in mathematics and scientific computing in the near future.

MSC:

60H30 Applications of stochastic analysis (to PDEs, etc.)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
65C05 Monte Carlo methods
65C30 Numerical solutions to stochastic differential and integral equations
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs

References:

[1] Arjovsky, M.; Bottou, L., Towards principled methods for training generative adversarial networks (2017)
[2] Arjovsky, M.; Chintala, S.; Bottou, L.; Precup, D.; Teh, Y. W., Wasserstein generative adversarial networks, vol 70, 214-223 (2017)
[3] Avellaneda, M.; Levy, A.; ParÁS, A., Pricing and hedging derivative securities in markets with uncertain volatilities, Appl. Math. Finance, 2, 73-88 (1995) · Zbl 1466.91323 · doi:10.1080/13504869500000005
[4] Bally, V.; Pages, G., A quantisation algorithm for solving multidimensional discrete-time optimal stopping problems, Bernoulli, 9, 1003-1049 (2003) · Zbl 1042.60021 · doi:10.3150/bj/1072215199
[5] Beck, C.; Becker, S.; Cheridito, P.; Jentzen, A.; Neufeld, A., Deep splitting method for parabolic PDEs (2019)
[6] Beck, C.; E, W.; Jentzen, A., Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations, J. Nonlinear Sci., 29, 1563-1619 (2019) · Zbl 1442.91116 · doi:10.1007/s00332-018-9525-3
[7] Beck, C.; Gonon, L.; Jentzen, A., Overcoming the curse of dimensionality in the numerical approximation of high-dimensional semilinear elliptic partial differential equations (2020)
[8] Beck, C.; Hornung, F.; Hutzenthaler, M.; Jentzen, A.; Kruse, T., Overcoming the curse of dimensionality in the numerical approximation of Allen-Cahn partial differential equations via truncated full-history recursive multilevel Picard approximations, J. Numer. Math., 28, 197-222 (2020) · Zbl 1471.65169 · doi:10.1515/jnma-2019-0074
[9] Beck, C.; Hutzenthaler, M.; Jentzen, A., On nonlinear Feynman-Kac formulas for viscosity solutions of semilinear parabolic partial differential equations, Stoch. Dyn., 2150048 (2021) · Zbl 1490.60200 · doi:10.1142/s0219493721500489
[10] Becker, S.; Braunwarth, R.; Hutzenthaler, M.; Jentzen, A.; von Wurstemberger, P., Numerical simulations for full history recursive multilevel Picard approximations for systems of high-dimensional partial differential equations, Commun. Comput. Phys., 28, 2109-2138 (2020) · Zbl 1473.65251 · doi:10.4208/cicp.oa-2020-0130
[11] Becker, S.; Cheridito, P.; Jentzen, A., Deep optimal stopping, J. Mach. Learn. Res., 20, 1-25 (2019) · Zbl 1495.60029
[12] Becker, S.; Cheridito, P.; Jentzen, A., Pricing and hedging American-style options with deep learning, J. Risk Financ. Manag., 13, 158 (2020) · doi:10.3390/jrfm13070158
[13] Becker, S.; Cheridito, P.; Jentzen, A.; Welti, T., Solving high-dimensional optimal stopping problems using deep learning, Eur. J. Appl. Math., 32, 470-514 (2021) · Zbl 1505.91413 · doi:10.1017/s0956792521000073
[14] Bellman, R. E., Dynamic Programming (1957), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0077.13605
[15] Bender, C.; Denk, R., A forward scheme for backward SDEs, Stoch. Process. Appl., 117, 1793-1812 (2007) · Zbl 1131.60054 · doi:10.1016/j.spa.2007.03.005
[16] Bender, C.; Schweizer, N.; Zhuo, J., A primal-dual algorithm for Bsdes, Math. Finance, 27, 866-901 (2017) · Zbl 1423.91008 · doi:10.1111/mafi.12100
[17] Benning, M.; Celledoni, E.; Celledoni, E.; J. Ehrhardt, M.; Owren, B.; Schönlieb, C-B, Deep learning as optimal control problems: models and numerical methods, J. Comput. Dyn., 6, 171 (2019) · Zbl 1429.68249 · doi:10.3934/jcd.2019009
[18] Berg, J.; Nyström, K., A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing, 317, 28-41 (2018) · doi:10.1016/j.neucom.2018.06.056
[19] Bergman, Y. Z., Option pricing with differential interest rates, Rev. Financ. Stud., 8, 475-500 (1995) · doi:10.1093/rfs/8.2.475
[20] Berner, J.; Grohs, P.; Jentzen, A., Analysis of the generalisation error: empirical risk minimisation over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations, SIAM J. Math. Data Sci., 2, 631-657 (2020) · Zbl 1480.60191 · doi:10.1137/19m125649x
[21] Billaud-Friess, M.; Macherey, A.; Nouy, A.; Prieur, C., Stochastic methods for solving high-dimensional partial differential equations, 125-141 (2018), Berlin: Springer, Berlin · Zbl 07240092
[22] Bouchard, B.; Touzi, N., Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations, Stoch. Process. Appl., 111, 175-206 (2004) · Zbl 1071.60059 · doi:10.1016/j.spa.2004.01.001
[23] Bressan, A.; Piccoli, B., Introduction to the Mathematical Theory of Control, vol 1 (2007), Springfield: American Institute of Mathematical Sciences, Springfield · Zbl 1127.93002
[24] Briand, P.; Labart, C., Simulation of BSDEs by Wiener chaos expansion, Ann. Appl. Probab., 24, 1129-1171 (2014) · Zbl 1311.60077 · doi:10.1214/13-aap943
[25] Cai, Z.; Liu, J., Approximating quantum many-body wave functions using artificial neural networks, Phys. Rev. B, 97 (2018) · doi:10.1103/physrevb.97.035116
[26] Carleo, G.; Troyer, M., Solving the quantum many-body problem with artificial neural networks, Science, 355, 602-606 (2017) · Zbl 1404.81313 · doi:10.1126/science.aag2302
[27] Carmona, R.; Laurière, M., Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II. The finite horizon case (2019)
[28] Carmona, R.; Laurière, M., Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games I: the ergodic case, SIAM J. Numer. Anal., 59, 1455-1485 (2021) · Zbl 1479.65013 · doi:10.1137/19m1274377
[29] Celledoni, E.; Ehrhardt, M. J.; Etmann, C.; McLachlan, R. I.; Owren, B.; Schonlieb, C-B; Sherry, F., Structure-preserving deep learning, Eur. J. Appl. Math., 32, 888-936 (2020) · Zbl 1538.68038 · doi:10.1017/s0956792521000139
[30] Chan-Wai-Nam, Q.; Mikael, J.; Warin, X., Machine learning for semi linear PDEs, J. Sci. Comput., 79, 1667-1712 (2019) · Zbl 1433.68332 · doi:10.1007/s10915-019-00908-3
[31] Chang, D.; Liu, H.; Xiong, J., A branching particle system approximation for a class of FBSDEs, Probab. Uncertain. Quantitat. Risk, 1, 1-34 (2016) · Zbl 1440.60062 · doi:10.1186/s41546-016-0007-y
[32] Chen, R. T.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D., Neural ordinary differential equations, 6572-6583 (2018)
[33] Chen, Y.; Lu, L.; Karniadakis, G. E.; Dal Negro, L., Physics-informed neural networks for inverse problems in nano-optics and metamaterials, Opt. Express, 28, 11618-11633 (2020) · doi:10.1364/oe.384875
[34] Crépey, S.; Gerboud, R.; Grbac, Z.; Ngor, N., Counterparty risk and funding: the four wings of the TVA, Int. J. Theor. Appl. Finan., 16, 1350006 (2013) · Zbl 1266.91115 · doi:10.1142/s0219024913500064
[35] Crisan, D.; Manolarakis, K., Probabilistic methods for semilinear partial differential equations. Applications to finance, ESAIM: Math. Modelling Numer. Anal., 44, 1107-1133 (2010) · Zbl 1210.65011 · doi:10.1051/m2an/2010054
[36] Crisan, D.; Manolarakis, K., Solving backward stochastic differential equations using the cubature method: application to nonlinear pricing, SIAM J. Finan. Math., 3, 534-571 (2012) · Zbl 1259.65005 · doi:10.1137/090765766
[37] Crisan, D.; Manolarakis, K., Second order discretisation of backward SDEs and simulation with the cubature method, Ann. Appl. Probab., 24, 652-678 (2014) · Zbl 1303.60046 · doi:10.1214/13-aap932
[38] Crisan, D.; Manolarakis, K.; Touzi, N., On the Monte Carlo simulation of BSDEs: an improvement on the Malliavin weights, Stoch. Process. Appl., 120, 1133-1158 (2010) · Zbl 1193.65005 · doi:10.1016/j.spa.2010.03.015
[39] Darbon, J.; Osher, S., Algorithms for overcoming the curse of dimensionality for certain Hamilton-Jacobi equations arising in control theory and elsewhere, Res. Math. Sci., 3, 19 (2016) · Zbl 1348.49026 · doi:10.1186/s40687-016-0068-7
[40] Delarue, F.; Menozzi, S., A forward-backward stochastic algorithm for quasi-linear PDEs, Ann. Appl. Probab., 16, 140-184 (2006) · Zbl 1097.65011 · doi:10.1214/105051605000000674
[41] Dirac, P. A M., Quantum mechanics of many-electron systems, Proc. R. Soc. A, 123, 714-733 (1929) · JFM 55.0528.04 · doi:10.1098/rspa.1929.0094
[42] Dockhorn, T., A discussion on solving partial differential equations using neural networks (2019)
[43] Duffie, D.; Schroder, M.; Skiadas, C., Recursive valuation of defaultable securities and the timing of resolution of uncertainty, Ann. Appl. Probab., 6, 1075-1090 (1996) · Zbl 0868.90008 · doi:10.1214/aoap/1035463324
[44] E, W., A proposal on machine learning via dynamical systems, Commun. Math. Stat., 5, 1-11 (2017) · Zbl 1380.37154 · doi:10.1007/s40304-017-0103-z
[45] E, W.; Han, J.; Jentzen, A., Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations, Commun. Math. Stat., 5, 349-380 (2017) · Zbl 1382.65016 · doi:10.1007/s40304-017-0117-6
[46] E, W.; Han, J.; Li, Q., A mean-field optimal control formulation of deep learning, Res. Math. Sci., 6, 1-41 (2019) · Zbl 1421.49021 · doi:10.1007/s40687-018-0172-y
[47] E, W.; Hutzenthaler, M.; Jentzen, A.; Kruse, T., Multilevel Picard iterations for solving smooth semilinear parabolic heat equations, Partial. Differ. Equ. Appl., 2, 80 (2016) · Zbl 1476.65273 · doi:10.1007/s42985-021-00089-5
[48] E, W.; Hutzenthaler, M.; Jentzen, A.; Kruse, T., On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations, J. Sci. Comput., 79, 1534-1571 (2019) · Zbl 1418.65149 · doi:10.1007/s10915-018-00903-0
[49] E, W.; Ma, C.; Wu, L., Machine learning from a continuous viewpoint: I, Sci. China Math., 63, 2233-2266 (2020) · Zbl 1472.68136 · doi:10.1007/s11425-020-1773-8
[50] E, W.; Ma, C.; Wu, L., The Barron space and the flow-induced function spaces for neural network models, Constr. Approx., 1-38 (2021) · Zbl 1490.65020 · doi:10.1007/s00365-021-09549-y
[51] E, W.; Yu, B., The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat., 6, 1-12 (2018) · Zbl 1392.35306 · doi:10.1007/s40304-018-0127-z
[52] Elbrächter, D.; Grohs, P.; Jentzen, A.; Schwab, C., DNN expression rate analysis of high-dimensional PDEs: application to option pricing, Constr. Approx., 1-69 (2021) · Zbl 1500.35009 · doi:10.1007/s00365-021-09541-6
[53] Evans, L. C., Partial Differential Equations, vol 19 (2010), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1194.35001
[54] Fahim, A.; Touzi, N.; Warin, X., A probabilistic numerical method for fully nonlinear parabolic PDEs, Ann. Appl. Probab., 21, 1322-1364 (2011) · Zbl 1230.65009 · doi:10.1214/10-aap723
[55] Fan, Y.; Ying, L., Solving inverse wave scattering with deep learning (2019)
[56] Fan, Y.; Ying, L., Solving electrical impedance tomography with deep learning, J. Comput. Phys., 404 (2020) · Zbl 1453.65041 · doi:10.1016/j.jcp.2019.109119
[57] Farahmand, A-m; Nabi, S.; Nikovski, D. N., Deep reinforcement learning for partial differential equation control, 3120-3127 (2017), Piscataway, NJ: IEEE, Piscataway, NJ
[58] Fisher, R. A., The wave of advance of advantageous genes, Ann. Eugenics, 7, 355-369 (1937) · JFM 63.1111.04 · doi:10.1111/j.1469-1809.1937.tb02153.x
[59] Fujii, M.; Takahashi, A.; Takahashi, M., Asymptotic expansion as prior knowledge in deep learning method for high dimensional BSDEs, Asia-Pacific Financ. Markets, 26, 391-408 (2019) · Zbl 1422.91694 · doi:10.1007/s10690-019-09271-7
[60] Geiss, C.; Labart, C., Simulation of BSDEs with jumps by Wiener chaos expansion, Stoch. Process. Appl., 126, 2123-2162 (2016) · Zbl 1336.60138 · doi:10.1016/j.spa.2016.01.006
[61] Giles, M. B., Multilevel Monte Carlo path simulation, Oper. Res., 56, 607-617 (2008) · Zbl 1167.65316 · doi:10.1287/opre.1070.0496
[62] Giles, M. B., Multilevel Monte Carlo methods, Acta Numer., 24, 259 (2015) · Zbl 1316.65010 · doi:10.1017/s096249291500001x
[63] Giles, M. B.; Jentzen, A.; Welti, T., Generalised multilevel Picard approximations (2019)
[64] Gnoatto, A.; Picarelli, A.; Reisinger, C., Deep xVA solver-a neural network based counterparty credit risk management framework (2020)
[65] Gobet, E.; Labart, C., Solving BSDE with adaptive control variate, SIAM J. Numer. Anal., 48, 257-277 (2010) · Zbl 1208.60055 · doi:10.1137/090755060
[66] Gobet, E.; Lemor, J-P, Numerical simulation of BSDEs using empirical regression methods: theory and practice (2008)
[67] Gobet, E.; Lemor, J-P; Warin, X., A regression-based Monte Carlo method to solve backward stochastic differential equations, Ann. Appl. Probab., 15, 2172-2202 (2005) · Zbl 1083.60047 · doi:10.1214/105051605000000412
[68] Gobet, E.; López-Salas, J. G.; Turkedjiev, P.; Vázquez, C., Stratified regression Monte-Carlo scheme for semilinear PDEs and BSDEs with large scale parallelisation on GPUs, SIAM J. Sci. Comput., 38, C652-677 (2016) · Zbl 1352.65008 · doi:10.1137/16m106371x
[69] Gobet, E.; Turkedjiev, P., Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions, Math. Comput., 85, 1359-1391 (2016) · Zbl 1344.60067 · doi:10.1090/mcom/3013
[70] Gobet, E.; Turkedjiev, P., Approximation of backward stochastic differential equations using Malliavin weights and least-squares regression, Bernoulli, 22, 530-562 (2016) · Zbl 1339.60094 · doi:10.3150/14-bej667
[71] Gonon, L.; Grohs, P.; Jentzen, A.; Kofler, D.; Šiška, D., Uniform error estimates for artificial neural network approximations for heat equations, IMA J. Numer. Anal. (2021) · Zbl 1502.65171 · doi:10.1093/imanum/drab027
[72] Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y., Generative adversarial nets, Advances in Neural Information Processing Systems, 2672-2680 (2014)
[73] Goudenège, L.; Molent, A.; Zanette, A., Variance reduction applied to machine learning for pricing Bermudan/American options in high dimension (2019)
[74] Grohs, P.; Hornung, F.; Jentzen, A.; Von Wurstemberger, P., A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations, Mem. Am. Math. Soc. (2018)
[75] Grohs, P.; Jentzen, A.; Salimova, D., Deep neural network approximations for Monte Carlo algorithms, Partial. Differ. Equ. Appl. (2019)
[76] Guo, W.; Zhang, J.; Zhuo, J., A monotone scheme for high-dimensional fully nonlinear PDEs, Ann. Appl. Probab., 25, 1540-1580 (2015) · Zbl 1321.65158 · doi:10.1214/14-aap1030
[77] Guyon, J.; Henry-Labordère, P., Uncertain volatility model: a Monte-Carlo approach, J.Comput. Finance, 14, 37 (2011) · doi:10.21314/jcf.2011.233
[78] Han, J.; E, W., Deep learning approximation for stochastic control problems (2016)
[79] Han, J.; Hu, R., Deep fictitious play for finding Markovian Nash equilibrium in multi-agent games, vol 107, 221-245 (2020)
[80] Han, J.; Hu, R.; Long, J., Convergence of deep fictitious play for stochastic differential games (2020)
[81] Han, J.; Jentzen, A.; E, W., Solving high-dimensional partial differential equations using deep learning, Proc. Natl Acad. Sci. USA, 115, 8505-8510 (2018) · Zbl 1416.35137 · doi:10.1073/pnas.1718942115
[82] Han, J.; Long, J., Convergence of the deep BSDE method for coupled FBSDEs, Probab. Uncertain. Quantit. Risk, 5, 1-33 (2020) · Zbl 1454.60105 · doi:10.1186/s41546-020-00047-w
[83] Han, J.; Lu, J.; Zhou, M., Solving high-dimensional eigenvalue problems using deep neural networks: a diffusion Monte Carlo like approach, J. Comput. Phys., 423 (2020) · Zbl 07508411 · doi:10.1016/j.jcp.2020.109792
[84] Han, J.; Zhang, L.; E, W., Solving many-electron Schrödinger equation using deep neural networks, J. Comput. Phys., 399 (2019) · Zbl 1457.81010 · doi:10.1016/j.jcp.2019.108929
[85] Heinrich, S., Monte Carlo complexity of global solution of integral equations, J. Complexity, 14, 151-175 (1998) · Zbl 0920.65090 · doi:10.1006/jcom.1998.0471
[86] Heinrich, S., Multilevel Monte Carlo methods, 58-67 (2001), Berlin: Springer, Berlin · Zbl 1031.65005
[87] Heinrich, S.; Sindambiwe, E., Monte Carlo complexity of parametric integration, J. Complexity, 15, 317-341 (1999) · Zbl 0958.68068 · doi:10.1006/jcom.1999.0508
[88] Henry-Labordère, P., Counterparty risk valuation: a marked branching diffusion approach (2012)
[89] Henry-Labordère, P., Deep primal-dual algorithm for BSDEs: applications of machine learning to CVA and IM, SSRN Electron. J. (2017) · doi:10.2139/ssrn.3071506
[90] Henry-Labordère, P.; Tan, X.; Touzi, N., A numerical algorithm for a class of BSDEs via the branching process, Stoch. Process. Appl., 124, 1112-1140 (2014) · Zbl 1301.60084 · doi:10.1016/j.spa.2013.10.005
[91] Henry-Labordère, P.; Oudjane, N.; Tan, X.; Touzi, N.; Warin, X., Branching diffusion representation of semilinear PDEs and Monte Carlo approximation, Ann. Inst. Henri Poincare, 55, 184-210 (2019) · Zbl 1467.60067 · doi:10.1214/17-aihp880
[92] Hermann, J.; Schätzle, Z.; Noé, F., Deep-neural-network solution of the electronic Schrödinger equation, Nat. Chem., 12, 891-897 (2020) · doi:10.1038/s41557-020-0544-y
[93] Hornung, F.; Jentzen, A.; Salimova, D., Space-time deep neural network approximations for high-dimensional partial differential equations (2020)
[94] Huang, M.; Caines, P. E.; Malhamé, R. P., Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized ϵ-Nash equilibria, IEEE Trans. Autom. Control, 52, 1560-1571 (2007) · Zbl 1366.91016 · doi:10.1109/tac.2007.904450
[95] Huang, M.; Malhamé, R. P.; Caines, P. E., Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6, 221-252 (2006) · Zbl 1136.91349 · doi:10.4310/cis.2006.v6.n3.a5
[96] Huré, C.; Pham, H.; Warin, X., Deep backward schemes for high-dimensional nonlinear PDEs, Math. Comput., 89, 1547-1579 (2020) · Zbl 1440.60063 · doi:10.1090/mcom/3514
[97] Hutzenthaler, M.; Jentzen, A.; Kruse, T., Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities, Found. Comput. Math., 1-62 (2021) · Zbl 1501.65084 · doi:10.1007/s10208-021-09514-y
[98] Hutzenthaler, M.; Jentzen, A.; Kruse, T.; Nguyen, T. A., Multilevel Picard approximations for high-dimensional semilinear second-order PDEs with Lipschitz nonlinearities (2020)
[99] Hutzenthaler, M.; Jentzen, A.; Kruse, T.; Nguyen, T. A., A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations, SN Partial Differ. Equ. Appl., 1, 1-34 (2020) · Zbl 1455.65200 · doi:10.1007/s42985-019-0006-9
[100] Hutzenthaler, M.; Jentzen, A.; Kruse, T.; Anh Nguyen, T.; von Wurstemberger, P., Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations, Proc. R. Soc. A, 476, 20190630 (2020) · Zbl 1472.65157 · doi:10.1098/rspa.2019.0630
[101] Hutzenthaler, M.; Jentzen, A.; von Wurstemberger, P., Overcoming the curse of dimensionality in the approximative pricing of financial derivatives with default risks, Electron. J. Probab., 25, 1-73 (2019) · Zbl 1469.60220 · doi:10.1214/20-EJP423
[102] Hutzenthaler, M.; Kruse, T., Multilevel Picard approximations of high-dimensional semilinear parabolic differential equations with gradient-dependent nonlinearities, SIAM J. Numer. Anal., 58, 929-961 (2020) · doi:10.1137/17m1157015
[103] Jacquier, A.; Oumgari, M., Deep curve-dependent PDEs for affine rough volatility (2019)
[104] Jentzen, A.; Salimova, D.; Welti, T., A proof that deep artificial neural networks overcome the curse of dimensionality in the numerical approximation of Kolmogorov partial differential equations with constant diffusion and nonlinear drift coefficients, Commun. Math. Sci., 19, 1167-1205 (2021) · Zbl 1475.65157 · doi:10.4310/cms.2021.v19.n5.a1
[105] Ji, S.; Peng, S.; Peng, Y.; Zhang, X., Three algorithms for solving high-dimensional fully-coupled FBSDEs through deep learning, IEEE Intell. Syst., 35, 71-84 (2020) · doi:10.1109/mis.2020.2971597
[106] Jiang, D. R.; Powell, W. B., An approximate dynamic programming algorithm for monotone value functions, Oper. Res., 63, 1489-1511 (2015) · Zbl 1334.90194 · doi:10.1287/opre.2015.1425
[107] Jianyu, L.; Siwei, L.; Yingjian, Q.; Yaping, H., Numerical solution of elliptic partial differential equation using radial basis function neural networks, Neural Netw., 16, 729-734 (2003) · doi:10.1016/s0893-6080(03)00083-2
[108] Kang, W.; Gong, Q.; Nakamura-Zimmerer, T.; Fahroo, F., Algorithms of data generation for deep learning and feedback design: a survey, Physica D, 425 (2021) · Zbl 1511.49019 · doi:10.1016/j.physd.2021.132955
[109] Karatzas, I.; Shreve, S. E., Brownian Motion and Stochastic Calculus (1998), New York: Springer, New York
[110] Khoo, Y.; Lu, J.; Ying, L., Solving for high-dimensional committor functions using artificial neural networks, Res. Math. Sci., 6, 1 (2019) · Zbl 1498.60222 · doi:10.1007/s40687-018-0160-2
[111] Khoo, Y.; Lu, J.; Ying, L., Solving parametric PDE problems with artificial neural networks, Eur. J. Appl. Math., 1-15 (2020) · doi:10.1017/s0956792520000182
[112] Khoo, Y.; Ying, L., SwitchNet: a neural network model for forward and inverse scattering problems, SIAM J. Sci. Comput., 41, A3182-3201 (2019) · Zbl 1425.65208 · doi:10.1137/18m1222399
[113] Kingma, D.; Ba, J., Adam: a method for stochastic optimisation (2015)
[114] Kolmogorov, A.; Petrovskii, I.; Piscunov, N., A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem, Moscow Univ. Bull. Math., 1, 1-26 (1937)
[115] Kutyniok, G.; Petersen, P.; Raslan, M.; Schneider, R., A theoretical analysis of deep neural networks and parametric PDEs, Constr. Approx., 1-53 (2021)
[116] Labart, C.; Lelong, J., A parallel algorithm for solving BSDEs, Monte Carlo Methods Appl., 19, 11-39 (2013) · Zbl 1263.65005 · doi:10.1515/mcma-2013-0001
[117] Lagaris, I. E.; Likas, A.; Fotiadis, D. I., Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw., 9, 987-1000 (1998) · doi:10.1109/72.712178
[118] Lasry, J-M; Lions, P-L, Jeux à champ moyen. I: Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 9, 619-625 (2006) · Zbl 1153.91009 · doi:10.1016/j.crma.2006.09.019
[119] Lasry, J-M; Lions, P-L, Jeux à champ moyen: II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 10, 679-684 (2006) · Zbl 1153.91010 · doi:10.1016/j.crma.2006.09.018
[120] Lasry, J-M; Lions, P-L, Mean field games, Japanese J. Math., 2, 229-260 (2007) · Zbl 1156.91321 · doi:10.1007/s11537-007-0657-8
[121] Lee, H.; Kang, I. S., Neural algorithm for solving differential equations, J. Comput. Phys., 91, 110-131 (1990) · Zbl 0717.65062 · doi:10.1016/0021-9991(90)90007-n
[122] Leland, H., Option pricing and replication with transactions costs, J. Finance, 40, 1283-1301 (1985) · doi:10.1111/j.1540-6261.1985.tb02383.x
[123] Li, Q.; Chen, L.; Tai, C.; E, W., Maximum principle based algorithms for deep learning, J. Mach. Learn. Res., 18, 1-29 (2018) · Zbl 1467.68156
[124] Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A., Neural operator: graph kernel network for partial differential equations (2020)
[125] Lin, A. T.; Fung, S. W.; Li, W.; Nurbekyan, L.; Osher, S. J., Alternating the population and control neural networks to solve high-dimensional stochastic mean-field games, Proc. Natl Acad. Sci., 118, e2024713118 (2021) · doi:10.1073/pnas.2024713118
[126] Luo, D.; Clark, B. K., Backflow transformations via neural networks for quantum many-body wave functions, Phys. Rev. Lett., 122 (2019) · doi:10.1103/physrevlett.122.226401
[127] Lye, K. O.; Mishra, S.; Ray, D., Deep learning observables in computational fluid dynamics, J. Comput. Phys., 410 (2020) · Zbl 1436.76051 · doi:10.1016/j.jcp.2020.109339
[128] Magill, M.; Qureshi, F.; de Haan, H., Neural networks trained to solve differential equations learn general representations, Advances in Neural Information Processing Systems, 4071-4081 (2018)
[129] Massaroli, S.; Poli, M.; Califano, F.; Faragasso, A.; Park, J.; Yamashita, A.; Asama, H., Port-Hamiltonian approach to neural network training, 6799-6806 (2019), Piscataway, NJ: IEEE, Piscataway, NJ
[130] McKean, H. P., Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov, Comm. Pure Appl. Math., 28, 323-331 (1975) · Zbl 0316.35053 · doi:10.1002/cpa.3160280302
[131] Müller, J.; Zeinhofer, M., Deep Ritz revisited (2019)
[132] Nakamura-Zimmerer, T.; Gong, Q.; Kang, W., Adaptive deep learning for high-dimensional Hamilton-Jacobi-Bellman equations, SIAM J. Sci. Comput., 43, A1221-1247 (2021) · Zbl 1467.49028 · doi:10.1137/19m1288802
[133] Nüsken, N.; Richter, L., Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space, Partial Differ. Equ. Appl., 2, 1-48 (2021) · Zbl 1480.35101 · doi:10.1007/s42985-021-00102-x
[134] Oksendal, B., Stochastic Differential Equations: An Introduction with Applications (2013), Berlin: Springer, Berlin
[135] Pardoux, É.; Peng, S., Backward stochastic differential equations and quasilinear parabolic partial differential equations, Stochastic Partial Differential Equations and Their applications, 200-217 (1991), Berlin: Springer, Berlin · Zbl 0766.60079
[136] Pardoux, E.; Tang, S., Forward-backward stochastic differential equations and quasilinear parabolic PDEs, Probab. Theory Relat. Fields, 114, 123-150 (1999) · Zbl 0943.60057 · doi:10.1007/s004409970001
[137] Pfau, D.; Spencer, J. S.; Matthews, A. G.; Foulkes, W. M C., Ab initio solution of the many-electron Schrödinger equation with deep neural networks, Phys. Rev. Res., 2 (2020) · doi:10.1103/physrevresearch.2.033429
[138] Pham, H., Feynman-Kac representation of fully nonlinear PDEs and applications, Acta Math. Vietnamica, 40, 255-269 (2015) · Zbl 1322.60133 · doi:10.1007/s40306-015-0128-x
[139] Pham, H.; Warin, X.; Germain, M., Neural networks-based backward scheme for fully nonlinear PDEs, SN Partial Differ. Equ. Appl., 2, 1-24 (2021) · Zbl 1538.65259 · doi:10.1007/s42985-020-00062-8
[140] Raissi, M., Deep hidden physics models: deep learning of nonlinear partial differential equations, J. Mach. Learn. Res., 19, 932-955 (2018) · Zbl 1439.68021
[141] Raissi, M., Forward-backward stochastic neural networks: deep learning of high-dimensional partial differential equations (2018)
[142] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707 (2019) · Zbl 1415.68175 · doi:10.1016/j.jcp.2018.10.045
[143] Rao, A. V., A survey of numerical methods for optimal control, Advances in the Astronautical Sciences, vol 135, 497-528 (2009)
[144] Reisinger, C.; Zhang, Y., Rectified deep neural networks overcome the curse of dimensionality for nonsmooth value functions in zero-sum games of nonlinear stiff systems, Anal. Appl., 18, 951-999 (2020) · Zbl 1456.82804 · doi:10.1142/s0219530520500116
[145] Ruiz-Balet, D.; Zuazua, E., Neural ODE control for classification, approximation and transport (2021)
[146] Ruszczyński, A.; Yao, J., A dual method for evaluation of dynamic risk in diffusion processes, ESAIM: Control Optim. Calculus Variations, 26, 96 (2020) · Zbl 1458.60090 · doi:10.1051/cocv/2020018
[147] Ruthotto, L.; Osher, S. J.; Li, W.; Nurbekyan, L.; Fung, S. W., A machine learning framework for solving high-dimensional mean field game and mean field control problems, Proc. Natl Acad. Sci., 117, 9183-9193 (2020) · doi:10.1073/pnas.1922204117
[148] Sirignano, J.; Spiliopoulos, K., DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys., 375, 1339-1364 (2018) · Zbl 1416.65394 · doi:10.1016/j.jcp.2018.08.029
[149] Skorokhod, A. V., Branching diffusion processes, Theory Probab. Appl., 9, 445-449 (1964) · Zbl 0264.60058 · doi:10.1137/1109059
[150] Strang, G.; Fix, G. J., An Analysis of the Finite Element Method (1973), Englewood Cliffs, NJ: Prentice-Hall, Englewood Cliffs, NJ · Zbl 0278.65116
[151] Sutton, R. S.; Barto, A. G., Reinforcement Learning: An Introduction (2018), Cambridge, MA: MIT press, Cambridge, MA · Zbl 1407.68009
[152] Uchiyama, T.; Sonehara, N., Solving inverse problems in nonlinear PDEs by recurrent neural networks, 99-102 (1993), Piscataway, NJ: IEEE, Piscataway, NJ
[153] Von Petersdorff, T.; Schwab, C., Numerical solution of parabolic equations in high dimensions, ESAIM: Math. Modelling Numer. Anal., 38, 93-127 (2004) · Zbl 1083.65095 · doi:10.1051/m2an:2004005
[154] Wang, H.; Chen, H.; Sudjianto, A.; Liu, R.; Shen, Q., Deep learning-based BSDE solver for LIBOR market model with application to Bermudan swaption pricing and hedging (2018)
[155] Warin, X., Variations on branching methods for non linear PDEs (2017)
[156] Warin, X., Monte Carlo for high-dimensional degenerated semi linear and full non linear PDEs (2018)
[157] Warin, X., Nesting Monte Carlo for high-dimensional non-linear PDEs, Monte Carlo Methods Appl., 24, 225-247 (2018) · Zbl 07008421 · doi:10.1515/mcma-2018-2020
[158] Watanabe, S., On the branching process for Brownian particles with an absorbing boundary, J. Math. Kyoto Univ., 4, 385-398 (1965) · Zbl 0134.34401 · doi:10.1215/kjm/1250524667
[159] Xuan, Y.; Balkin, R.; Han, J.; Hu, R.; Ceniceros, H. D., Optimal policies for a pandemic: a stochastic game approach and a deep learning algorithm (2021)
[160] Zang, Y.; Bao, G.; Ye, X.; Zhou, H., Weak adversarial networks for high-dimensional partial differential equations, J. Comput. Phys., 411 (2020) · Zbl 1436.65156 · doi:10.1016/j.jcp.2020.109409
[161] Zhang, D.; Guo, L.; Karniadakis, G. E., Learning in modal space: solving time-dependent stochastic PDEs using physics-informed neural networks, SIAM J. Sci. Comput., 42, A639-665 (2020) · Zbl 1440.60067 · doi:10.1137/19m1260141
[162] Zhang, D.; Lu, L.; Guo, L.; Karniadakis, G. E., Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems, J. Comput. Phys., 397 (2019) · Zbl 1454.65008 · doi:10.1016/j.jcp.2019.07.048
[163] Zhang, J. A., Numerical scheme for BSDEs, Ann. Appl. Probab., 14, 459-488 (2004) · Zbl 1056.60067 · doi:10.1214/aoap/1075828058
[164] Zhang, W.; Cai, W., FBSDE based neural network algorithms for high-dimensional quasilinear parabolic PDEs (2020)
[165] Zhang, Y.; Wang, H.; Chen, W.; Zeng, J.; Zhang, L.; Wang, H.; E, W., DP-GEN: a concurrent learning platform for the generation of reliable deep learning based potential energy models, Comput. Phys. Commun., 253 (2020) · Zbl 1522.81011 · doi:10.1016/j.cpc.2020.107206
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.